
Computer Graphics
Lecture 18

Object Order Rendering
Viewing Transformations - 1

Announcements

Transformations and Normals

t.fi IIt

Glittered
noumal transformedtangent

ñ.E o

FINE O

INT ME 0

NTM I

NTM M IIIIE.co
NTM
NmTC

© 2014 Steve Marschner •

Transforming normal vectors

• Transforming surface normals
–differences of points (and therefore tangents) transform OK
–normals do not --> use inverse transpose matrix

4

© 2014 Steve Marschner •

Transforming normal vectors

• Transforming surface normals
–differences of points (and therefore tangents) transform OK
–normals do not --> use inverse transpose matrix

4

Object Order Rendering

for each object:
 for each pixel:
 if object affects pixel:
 update pixel's color

Object Order Rendering:
The Secret Sauce

ppixel = Mpobject
What does this depend on

Camera pose
cameraintrinsic Id up

size etc

object pose size

Viewing Transformations
A standard sequence of transforms to go from 

object (model) space to screen (image) space

whiteboard!

see Scott attempt to draw in 3d!

Viewing Transformations
✐

✐

✐

✐

✐

✐

✐

✐

7.1. Viewing Transformations 147

object space

world space

camera space

canonical
view volume

sc
re

e
n

 s
p

a
ce

modeling
transformation

viewport
transformation

projection
transformation

camera
transformation

Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

A standard sequence of transforms to go from 
object (model) space to screen (image) space

A Wireframe Rendering
Algorithm

Form matrices

for each line segment :

 draw_line()

Mvp, Mproj, Mcam, Mmodel

M ← MvpMprojMcamMmodel

ai, bi

p ← Mai

q ← Mbi

p, q

Viewing Transformations:
Minimalist Edition

✐

✐

✐

✐

✐

✐

✐

✐

7.1. Viewing Transformations 147

object space

world space

camera space

canonical
view volume

sc
re

e
n

 s
p

a
ce

modeling
transformation

viewport
transformation

projection
transformation

camera
transformation

Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

I I I I

Let's do nothing and see how this works out...

A Wireframe Rendering
Algorithm: Code

Viewing Transformations:
Minimalist Edition

✐

✐

✐

✐

✐

✐

✐

✐

7.1. Viewing Transformations 147

object space

world space

camera space

canonical
view volume

sc
re

e
n

 s
p

a
ce

modeling
transformation

viewport
transformation

projection
transformation

camera
transformation

Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

I I I ?

Task 1: Find a viewport transformation that
puts the cube in the center of the image.

Viewing Transformations:
Minimalist Edition

✐

✐

✐

✐

✐

✐

✐

✐

7.1. Viewing Transformations 147

object space

world space

camera space

canonical
view volume

sc
re

e
n

 s
p

a
ce

modeling
transformation

viewport
transformation

projection
transformation

camera
transformation

Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

? I I

Task 2: Build a model transformation that centers a 40x40
cube at x=0, y=1, z=-4, rotated 30 degrees around the y axis.

Viewing Transformations:
Minimalist Edition

✐

✐

✐

✐

✐

✐

✐

✐

7.1. Viewing Transformations 147

object space

world space

camera space

canonical
view volume

sc
re

e
n

 s
p

a
ce

modeling
transformation

viewport
transformation

projection
transformation

camera
transformation

Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

? I I

Task 3: Move the camera 20 units in the +y direction (i.e., the
new eye should be at (0, 20, 0).

