

Computer Graphics

Lecture 17 3D Transformations Directions and Normals

• On the horizon:

- On the horizon:
 - Form project groups by Wednesday, 11/6 (two Wednesdays from now)

- On the horizon:
 - Form project groups by Wednesday, 11/6 (two Wednesdays from now)
 - Proposals due Friday 11/8

- On the horizon:
 - Form project groups by Wednesday, 11/6 (two Wednesdays from now)
 - Proposals due Friday 11/8
 - Take-home midlateterm exam out Friday 11/8, due start of class Tuesday 11/12

Goals

- Know how to apply affine transformations to direction vectors
- Know how to apply affine transformations to surface normals
- Know how form 3D affine transformation matrices for translation, scale, shear, and rotation about axes.

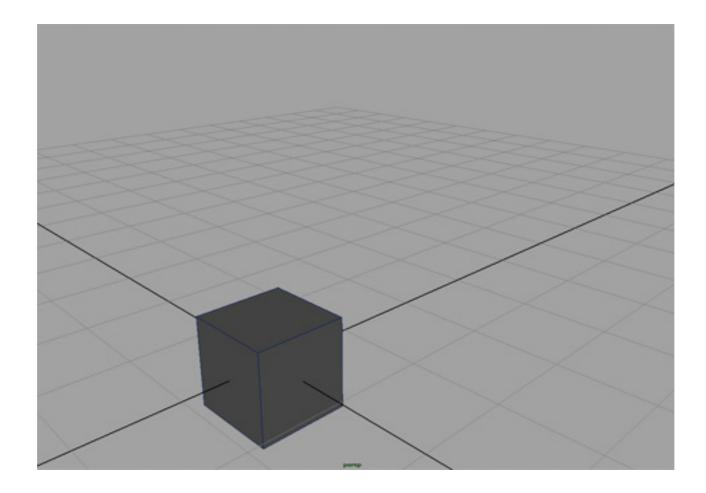
TODO Today

- 3D Affine Transformations
- 3D Rotations
- Transforming points vs vectors
- Transforming normals

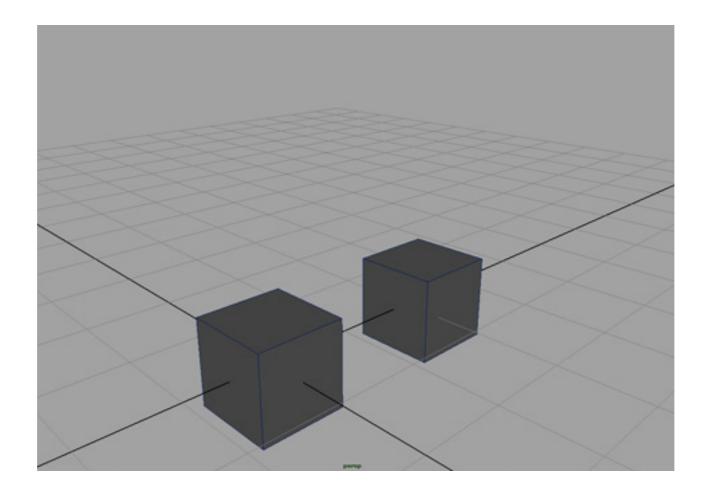
Transformations in 3D

- Pretty much the same stuff
 - but with one additional D

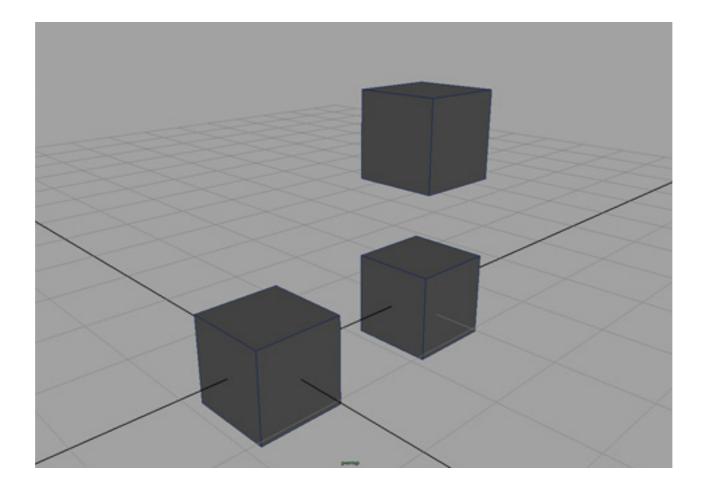
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



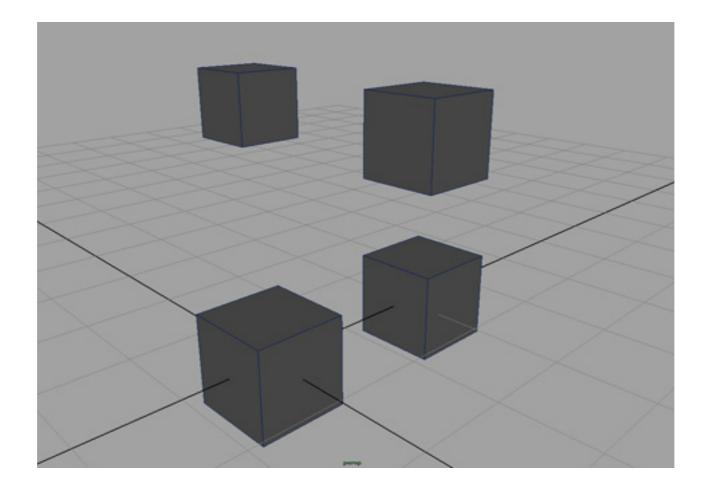
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

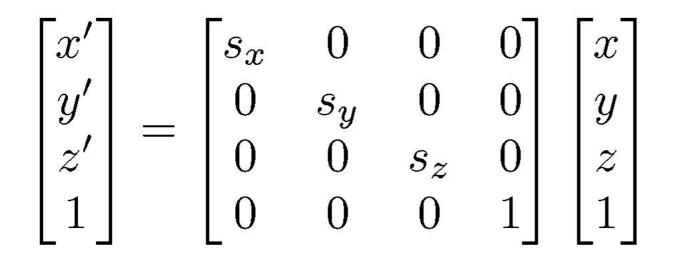


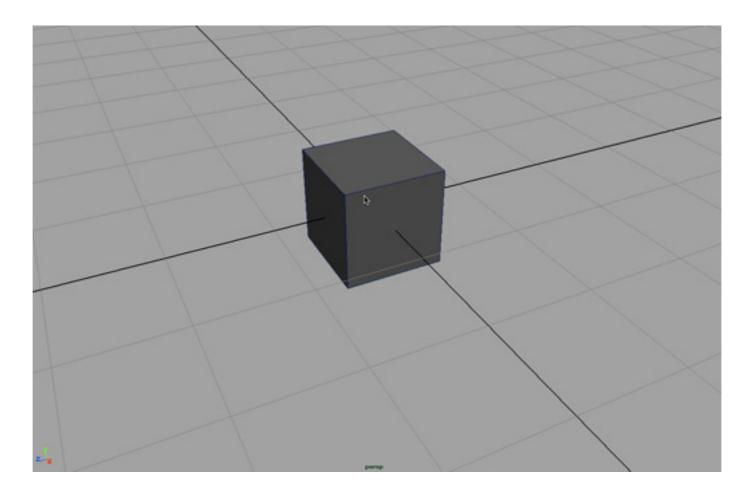
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

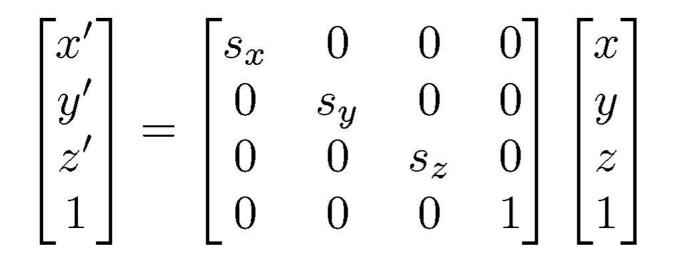


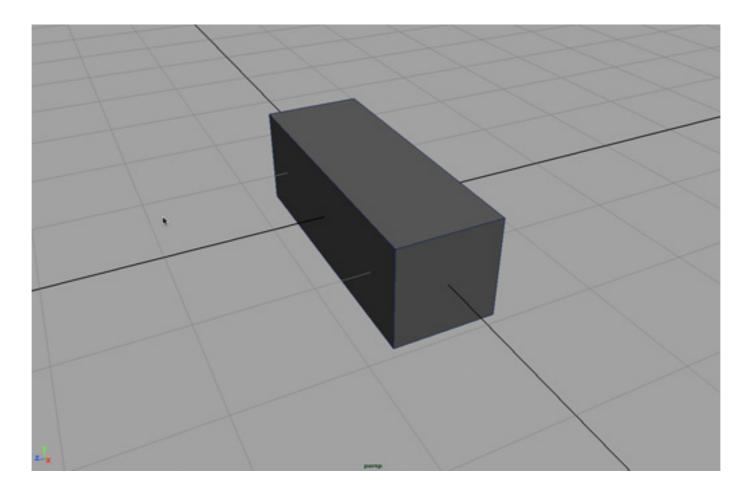
$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$



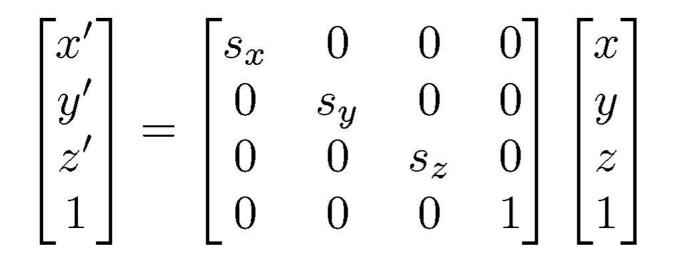


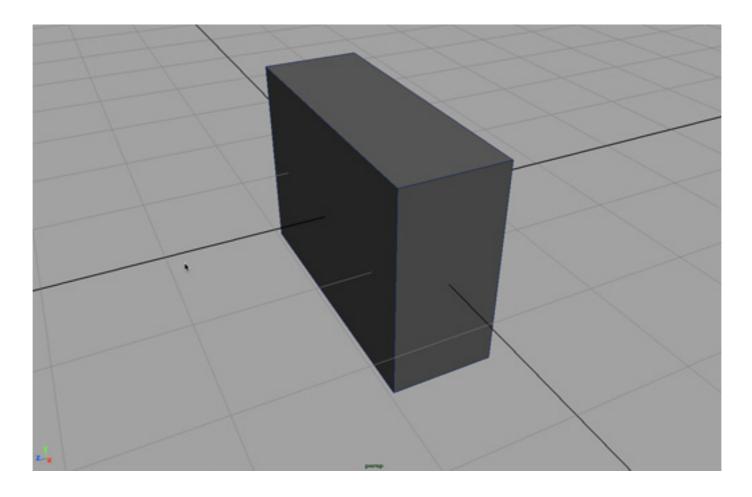


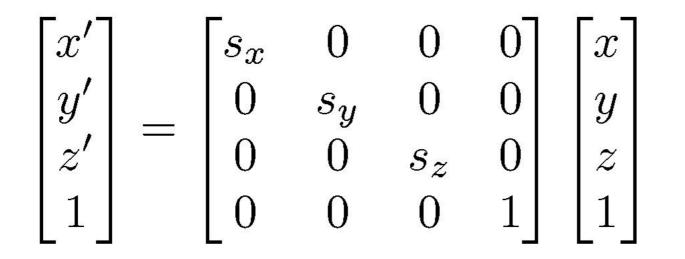


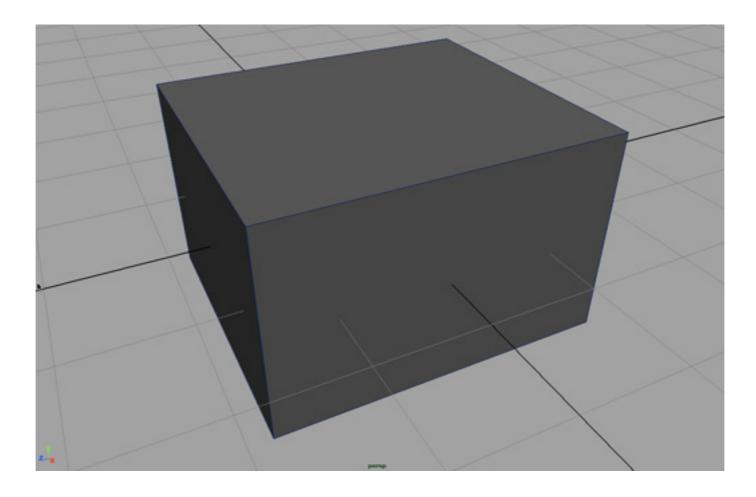


© 2014 Steve Marschner • 7







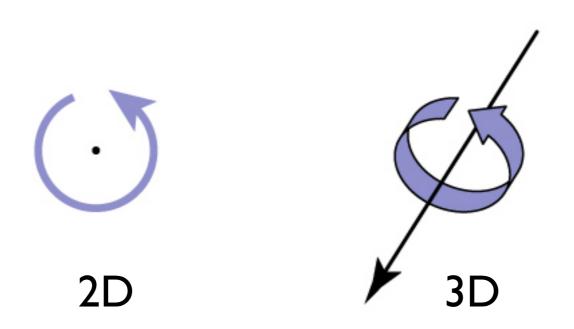


© 2014 Steve Marschner • 7

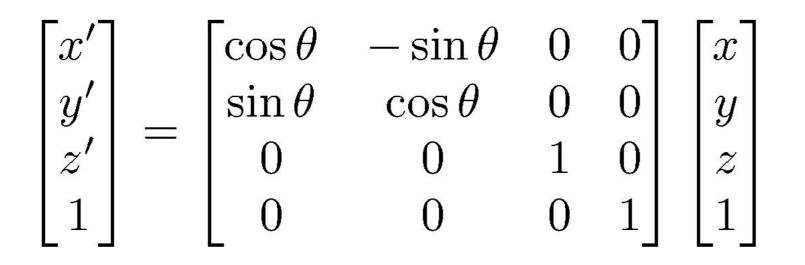
Rotations: A bit different

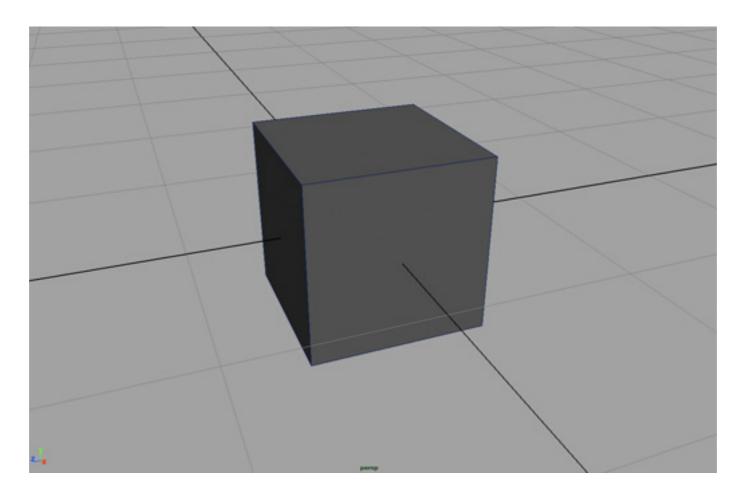
- A rotation in 2D is around a point
- A rotation in 3D is around an axis

 so 3D rotation is w.r.t a line, not just a point
 - -so 5D rotation is will a line, not just a point
 - -there are many more 3D rotations than 2D
 - a 3D space around a given point, not just ID

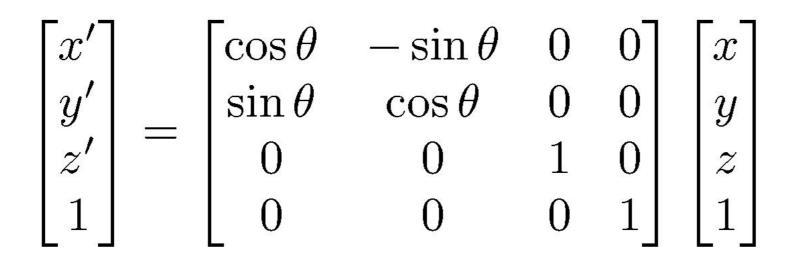


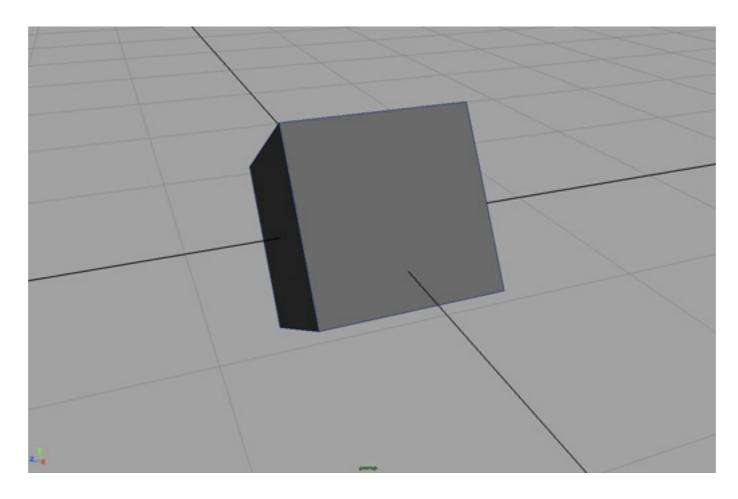
Rotation about z axis



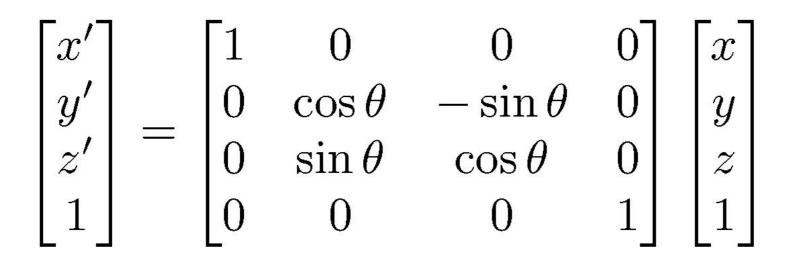


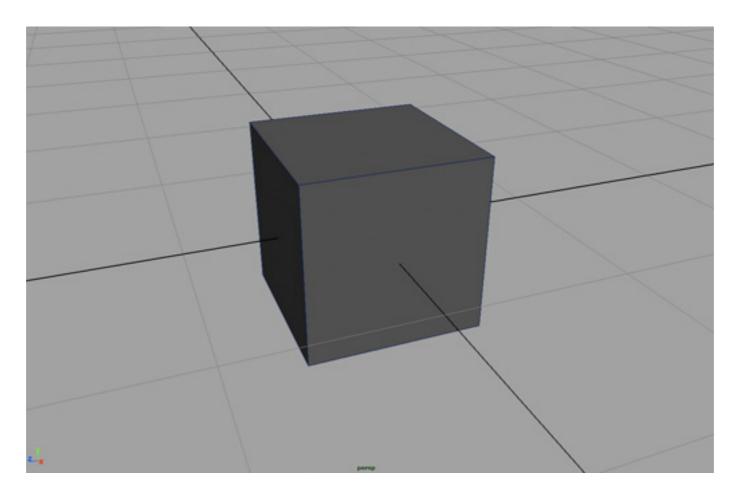
Rotation about z axis



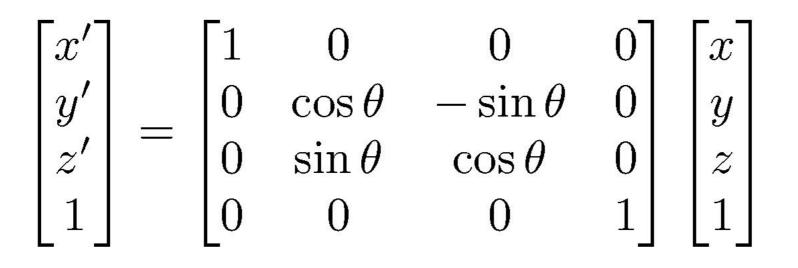


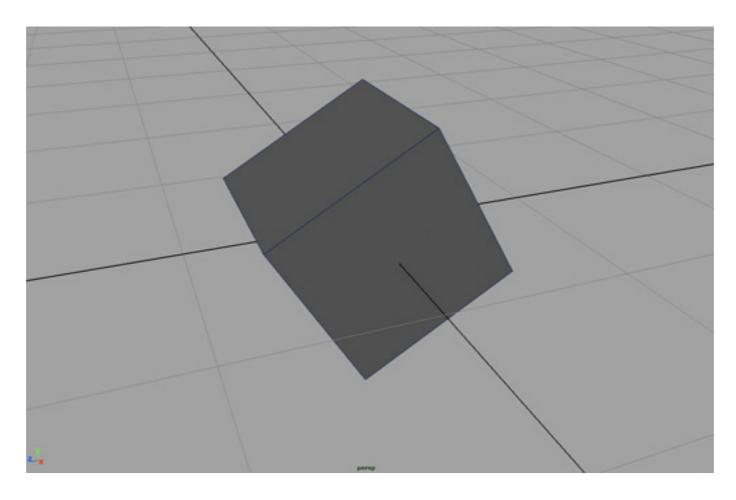
Rotation about x axis



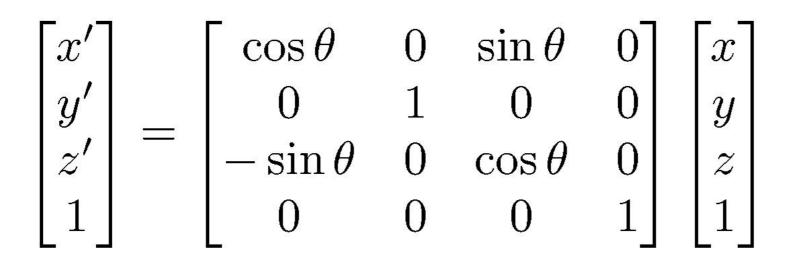


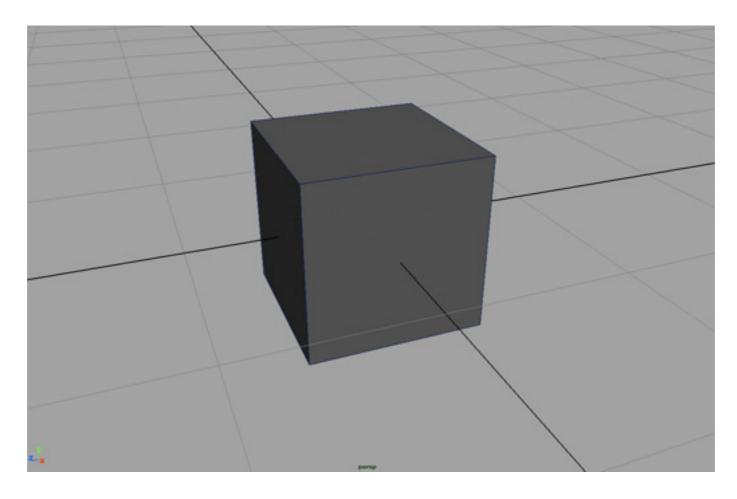
Rotation about x axis



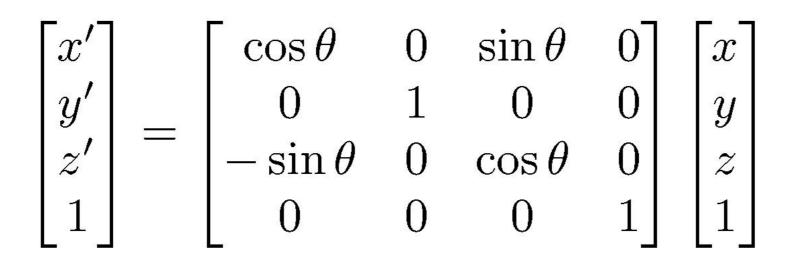


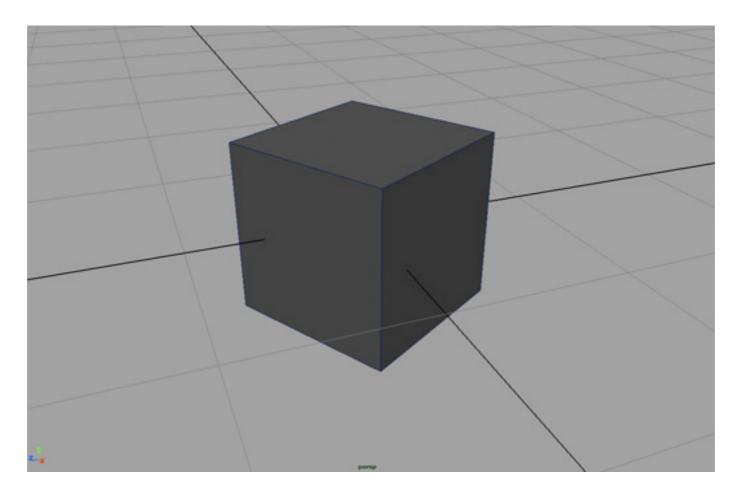
Rotation about y axis





Rotation about y axis





Rotations around an arbitrary axis

- Tricky many ways to describe them:
 - Euler angles: 3 rotations about 3 axes
 - Axis-angle
 - Quaternions
- Simplest conceptually: indirectly specify via coordinate frame transformations.
 - We did something like this when finding a camera basis!

Rotations around an arbitrary axis

- If you do all that... you get a formula you can find on <u>wikipedia</u>:
 - This is the formula for rotation of angle θ around an unitlength axis $\begin{bmatrix} u_x & u_y & u_z \end{bmatrix}^T$:

$$R = egin{bmatrix} \cos heta + u_x^2 \left(1 - \cos heta
ight) & u_x u_y \left(1 - \cos heta
ight) - u_z \sin heta & u_x u_z \left(1 - \cos heta
ight) + u_y \sin heta \ u_y u_x \left(1 - \cos heta
ight) + u_z \sin heta & \cos heta + u_y^2 \left(1 - \cos heta
ight) & u_y u_z \left(1 - \cos heta
ight) - u_x \sin heta \ u_z u_x \left(1 - \cos heta
ight) - u_y \sin heta & u_z u_y \left(1 - \cos heta
ight) + u_x \sin heta & \cos heta + u_z^2 \left(1 - \cos heta
ight) \end{bmatrix}$$

Transforming Points vs Directions

• Problem 1

Transforming Normals

• Problem 2

Transforming points and vectors

- Recall distinction points vs. vectors
 - vectors are just offsets (differences between points)
 - points have a location
 - represented by vector offset from a fixed origin
- Points and vectors transform differently
 - points respond to translation; vectors do not

$$\mathbf{v} = \mathbf{p} - \mathbf{q}$$

$$T(\mathbf{x}) = M\mathbf{x} + \mathbf{t}$$

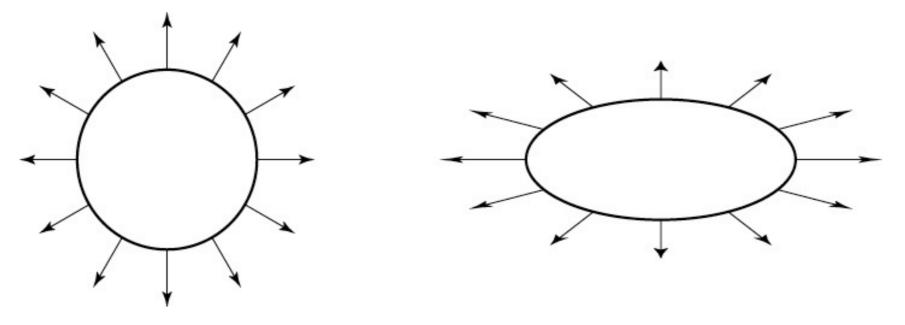
$$T(\mathbf{p} - \mathbf{q}) = M\mathbf{p} + \mathbf{t} - (M\mathbf{q} + \mathbf{t})$$

$$= M(\mathbf{p} - \mathbf{q}) + (\mathbf{t} - \mathbf{t}) = M\mathbf{v}$$

Transforming normal vectors

- Transforming surface normals
 - -differences of points (and therefore tangents) transform OK

-normals do not --> use inverse transpose matrix

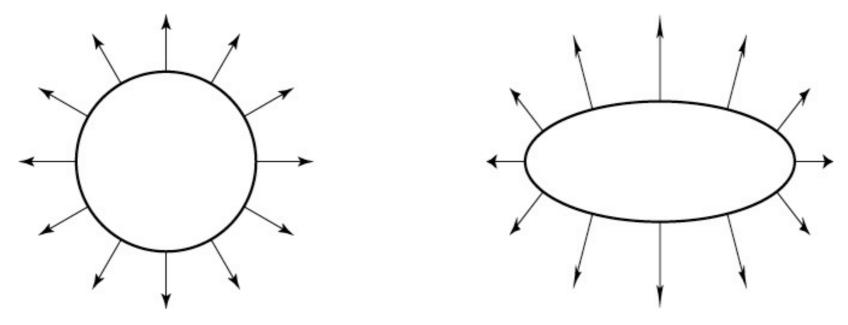


have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set $X = (M^T)^{-1}$ then: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$

Transforming normal vectors

- Transforming surface normals
 - -differences of points (and therefore tangents) transform OK

-normals do not --> use inverse transpose matrix



have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set $X = (M^T)^{-1}$ then: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$