Computer Graphics

Lecture 16
Homogeneous Coordinates
Affine Transformations
Composing Transformations
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Goals

e Know how to represent points with
homogeneous coordinates.

» Know how to construct 3x3 affine
transformation matrices that operate on
homogeneous coordinates

* Understand the change-of-frame view of affine
transformations

e Know how to compose transformations



Last time: 2D Matrix
Transformations



Linear transformation gallery

e Uniform scale
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Linear transformation gallery

e Shear
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Linear transformation gallery

e Nonuniform scale
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Linear transformation gallery

e Reflection

— can consider it a special case
of nonuniform scale




Linear transformation gallery

e Rotation
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Composing Linear Transformations

A: L 2 —> [ 2 Vec2 A(1in)::Vec2

B: 2 — | 2 Vec2 B(in::Vec2)

A*B: L 2 — | 2 A(B(x::Vec2) => Vec?2




Composing Linear Transformations
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Composing Linear Transformations
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Linear transformation gallery

* Translation

ahem?




About that translation thing...

* To the notes!



Composing transformations

* Want to move an object, then move it some more

p—T(p)— ST'(p)=(SoT)(p)

* We need to represent S o T (S compose T")

—and would like to use the same representation as for S and T

* Translation easy:

T(p)=p+ur;S(p) =p+ug

(SoT)(p)=p+ (ur + us)
* Translation by u; then by Ug is translation by ut + uc

— commutative!
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Composing transformations

* Linear transformations also straightforward

T'(p) = Mrp;S(p) = Msp
(S O T)(p) — MsMTp

* Transforming first by My then by Mc is the same as
transforming by McM+

— only sometimes commutative
* e.g.rotations & uniform scales
* e.g. non-uniform scales w/o rotation

— Note M¢My,or S o T,is T first,then §
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Combining linear with translation

* Need to use both in single framework

* Can represent arbitrary seq. as T(p) — Mp +u
-T(p) = Mrp + ur
~S(p) = Msp + us
(SoT)p)= Msg(Mrp+ur)+ ug

= (MsMt)p + (Msur + ug)

T S(7(0)) = S(ur)

* Transforming by M+ and u4, then by M and ug, is the
same as transforming by MiM; and u¢ + Mcu+

— This will work but is a little awkward
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Homogeneous coordinates

* A trick for representing the foregoing more elegantly

* Extra component w for vectors, extra row/column for

matrices

— for affine, can always keep w = |

* Represent linear transformations with dummy extra

row and column
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Homogeneous coordinates

* Represent translation using the extra column
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Homogeneous coordinates

* Composition just works, by 3x3 matrix multiplication

0

-MS ug

1

(MsM7)p + (Mgur + ug)

MT ur

0

1

1

P
1

* This is exactly the same as carrying around M and u

— but cleaner

—and generalizes in useful ways as we’'ll see later
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Affine transformations

* The set of transformations we have been looking at is
known as the “affine” transformations

— straight lines preserved; parallel lines preserved
— ratios of lengths along lines preserved (midpoints preserved)

AN
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Affine change of coordinates

* Six degrees of freedom
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Affine change of coordinates

* Coordinate frame: point plus basis

* Interpretation: transformation
changes representation of u
point from one basis to another

e “Frame to canonical’ matrix has
frame in columns
— takes points represented in frame

>
1_

-11 V
— represents them in canonical basis _O 0
—e.g.[00],[1 O],[0 I]
* Seems backward but bears thinking about



Rigid motions

* A transform made up of only translation and rotation is
a rigid motion or a rigid body transformation

* The linear part is an orthonormal matrix
i B
R = «

0 1

* Inverse of orthonormal matrix is transpose

— so inverse of rigid motion is easy:
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Transforming points and vectors

* Recall distinction points vs. vectors

— vectors are just offsets (differences between points)

— points have a location

* represented by vector offset from a fixed origin

* Points and vectors transform differently

— points respond to translation; vectors do not

vV=p—q

T(x)=Mx+t

T(p—q)=Mp

t— (Mq

t)

=M(p—q)+(t—t)=Mv
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Affine Composition

* Composition just works, by 3x3 matrix multiplication
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Affine Composition Example:
Rotation about not-the-origin

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin

— so translate that point to the origin

A

M =T 'RT
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Affine Composition Example:
Rotation about not-the-origin

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin
— so translate that point to the origin
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Affine Composition Example:
Rotation about not-the-origin

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin
— so translate that point to the origin
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Affine Composition Example:
Rotation about not-the-origin

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin
— so translate that point to the origin

t M =T 'RT

A
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Similarity Transformations

* When we move an object to the canonical frame to
apply a transformation, we are changing coordinates

— the transformation is easy to express in object’s frame
— so define it there and transform it

T, =FTpF!
— T, is the transformation expressed wrt. {e|, e}

— Tg is the transformation expressed in natural frame

— F is the frame-to-canonical matrix [u v p]

* This is a similarity transformation
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