
Computer Graphics
Lecture 16


Homogeneous Coordinates 
Affine Transformations 

Composing Transformations 



Announcements



Announcements



Goals
• Know how to represent points with 

homogeneous coordinates.


• Know how to construct 3x3 affine 
transformation matrices that operate on 
homogeneous coordinates


• Understand the change-of-frame view of affine 
transformations


• Know how to compose transformations



Last time: 2D Matrix 
Transformations



Linear transformation gallery

• Uniform scale



Linear transformation gallery

• Shear



Linear transformation gallery

• Nonuniform scale



Linear transformation gallery

• Reflection
– can consider it a special case 

of nonuniform scale



Linear transformation gallery

• Rotation


0.866 �0.5
0.5 0.866

�



Composing Linear Transformations

A: ℝ2 → ℝ2

B: ℝ2 → ℝ2

A * B: ℝ2 → ℝ2

Vec2 A(in)::Vec2

Vec2 B(in::Vec2)

A(B(x::Vec2) => Vec2



Composing Linear Transformations

A: ℝ2 → ℝ2

B: ℝ2 → ℝ2

A * B: ℝ2 → ℝ2

Vec2 A(in)::Vec2

Vec2 B(in::Vec2)

A(B(x::Vec2) => Vec2


0.866 �0.5
0.5 0.866

�Example:



Composing Linear Transformations

A: ℝ2 → ℝ2

B: ℝ2 → ℝ2

A * B: ℝ2 → ℝ2

Vec2 A(in)::Vec2

Vec2 B(in::Vec2)

A(B(x::Vec2) => Vec2


0.866 �0.5
0.5 0.866

�Example:



Linear transformation gallery

• Translation 
0.866 �0.5
0.5 0.866

�
ahem?



About that translation thing...

• To the notes!



© 2014 Steve Marschner • 

Composing transformations

• Want to move an object, then move it some more 
 

• We need to represent S o T (“S compose T”)
– and would like to use the same representation as for S and T

• Translation easy: 
 

• Translation by uT then by uS is translation by uT + uS

– commutative!

15



© 2014 Steve Marschner • 

Composing transformations

• Linear transformations also straightforward 
 
 

• Transforming first by MT then by MS is the same as 

transforming by MSMT

– only sometimes commutative
• e.g. rotations & uniform scales
• e.g. non-uniform scales w/o rotation

– Note MSMT, or S o T, is T first, then S

16



© 2014 Steve Marschner • 

Combining linear with translation

• Need to use both in single framework
• Can represent arbitrary seq. as 

–  

–  

–   

– e. g. 

• Transforming by MT and uT, then by MS and uS, is the 

same as transforming by MSMT and uS + MSuT

– This will work but is a little awkward
17



© 2014 Steve Marschner • 

Homogeneous coordinates

• A trick for representing the foregoing more elegantly
• Extra component w for vectors, extra row/column for 

matrices
– for affine, can always keep w = 1

• Represent linear transformations with dummy extra 
row and column

18



© 2014 Steve Marschner • 

Homogeneous coordinates

• Represent translation using the extra column

19



© 2014 Steve Marschner • 

Homogeneous coordinates

• Composition just works, by 3x3 matrix multiplication

• This is exactly the same as carrying around M and u 
– but cleaner
– and generalizes in useful ways as we’ll see later

20



© 2014 Steve Marschner • 

Affine transformations

• The set of transformations we have been looking at is 
known as the “affine” transformations
– straight lines preserved; parallel lines preserved
– ratios of lengths along lines preserved (midpoints preserved)

21



© 2014 Steve Marschner • 

Affine change of coordinates

• Six degrees of freedom

or

22



Affine change of coordinates

• Coordinate frame: point plus basis
• Interpretation: transformation 

changes representation of 
point from one basis to another

• “Frame to canonical” matrix has 
frame in columns
– takes points represented in frame
– represents them in canonical basis
– e.g. [0 0], [1 0], [0 1]

• Seems backward but bears thinking about



© 2014 Steve Marschner • 

Rigid motions

• A transform made up of only translation and rotation is 
a rigid motion or a rigid body transformation

• The linear part is an orthonormal matrix

• Inverse of orthonormal matrix is transpose
– so inverse of rigid motion is easy:

24



© 2014 Steve Marschner • 

Transforming points and vectors

• Recall distinction points vs. vectors
– vectors are just offsets (differences between points)
– points have a location

• represented by vector offset from a fixed origin

• Points and vectors transform differently
– points respond to translation; vectors do not

25



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 8

Affine Composition

• Composition just works, by 3x3 matrix multiplication

26



© 2014 Steve Marschner • 

Affine Composition Example: 
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

27



© 2014 Steve Marschner • 

Affine Composition Example: 
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

27



© 2014 Steve Marschner • 

Affine Composition Example: 
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

27



© 2014 Steve Marschner • 

Affine Composition Example: 
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

27



© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 8

Similarity Transformations

• When we move an object to the canonical frame to 
apply a transformation, we are changing coordinates
– the transformation is easy to express in object’s frame
– so define it there and transform it

– Te is the transformation expressed wrt. {e1, e2}

– TF is the transformation expressed in natural frame

– F is the frame-to-canonical matrix [u v p]

• This is a similarity transformation

28


