Computer Graphics

Lecture 16
Homogeneous Coordinates
Affine Transformations
Composing Transformations

Announcements

Announcements

Goals

e Know how to represent points with
homogeneous coordinates.

» Know how to construct 3x3 affine
transformation matrices that operate on
homogeneous coordinates

* Understand the change-of-frame view of affine
transformations

e Know how to compose transformations

Last time: 2D Matrix
Transformations

Linear transformation gallery

e Uniform scale

E
0

0

S

ST
SY

Linear transformation gallery

e Shear

.
O 1

x
Y

x + a/y_

Y

Linear transformation gallery

e Nonuniform scale

Sy

0

0

Sy

x
Y

Linear transformation gallery

e Reflection

— can consider it a special case
of nonuniform scale

Linear transformation gallery

e Rotation

cos 6

sin 6

—sin @

cos 6

-
Y.
0.866

0.5

xcosf — ysinf

xsinf + ycos 6

—0.5
0.866

Composing Linear Transformations

A: L 2 —> [2 Vec2 A(1in)::Vec2

B: 2 — | 2 Vec2 B(in::Vec2)

A*B: L 2 — | 2 A(B(x::Vec2) => Vec?2

Composing Linear Transformations

Al

B:

A*B: |

Example:

2

2

2

Vec2 A(1in)::Vec2

Vec2 B(1in::Vec2)

A(B(x::Vec2)

0.866

0.5

—0.5

0.866

=> Vec?2

Composing Linear Transformations

2

Al

B:

A*B: |

Example:

2 4

— |

— |

*

2 Vec2 A(in)::Vec?
_ 2 Vec2 B(1in::Vec2)
2 A(B(x::Vec2) => Vec?2
0.866 —0.5
0.5 0.866

Linear transformation gallery

* Translation

ahem?

About that translation thing...

* To the notes!

Composing transformations

* Want to move an object, then move it some more

p—T(p)— ST'(p)=(SoT)(p)

* We need to represent S o T (S compose T")

—and would like to use the same representation as for S and T

* Translation easy:

T(p)=p+ur;S(p) =p+ug

(SoT)(p)=p+ (ur + us)
* Translation by u; then by Ug is translation by ut + uc

— commutative!

© 2014 Steve Marschner ¢ 15

Composing transformations

* Linear transformations also straightforward

T'(p) = Mrp;S(p) = Msp
(S O T)(p) — MsMTp

* Transforming first by My then by Mc is the same as
transforming by McM+

— only sometimes commutative
* e.g.rotations & uniform scales
* e.g. non-uniform scales w/o rotation

— Note M¢My,or S o T,is T first,then §

© 2014 Steve Marschner ¢ 16

Combining linear with translation

* Need to use both in single framework

* Can represent arbitrary seq. as T(p) — Mp +u
-T(p) = Mrp + ur
~S(p) = Msp + us
(SoT)p)= Msg(Mrp+ur)+ ug

= (MsMt)p + (Msur + ug)

T S(7(0)) = S(ur)

* Transforming by M+ and u4, then by M and ug, is the
same as transforming by MiM; and u¢ + Mcu+

— This will work but is a little awkward

© 2014 Steve Marschner * 17

Homogeneous coordinates

* A trick for representing the foregoing more elegantly

* Extra component w for vectors, extra row/column for

matrices

— for affine, can always keep w = |

* Represent linear transformations with dummy extra

row and column

Co

O

ax + by
cx + dy

© 2014 Steve Marschner ¢ 18

Homogeneous coordinates

* Represent translation using the extra column

1

0
0

0
1

0

T+t

y+s
1

© 2014 Steve Marschner ¢ 19

Homogeneous coordinates

* Composition just works, by 3x3 matrix multiplication

0

-MS ug

1

(MsM7)p + (Mgur + ug)

MT ur

0

1

1

P
1

* This is exactly the same as carrying around M and u

— but cleaner

—and generalizes in useful ways as we’'ll see later

© 2014 Steve Marschner ¢ 20

Affine transformations

* The set of transformations we have been looking at is
known as the “affine” transformations

— straight lines preserved; parallel lines preserved
— ratios of lengths along lines preserved (midpoints preserved)

AN

© 2014 Steve Marschner * 21

Affine change of coordinates

* Six degrees of freedom

ail
a4

0

a2 Aas
a5 dg
0 1
o
€

or

_11 V
0 0

>
1_

© 2014 Steve Marschner ¢ 22

Affine change of coordinates

* Coordinate frame: point plus basis

* Interpretation: transformation
changes representation of u
point from one basis to another

e “Frame to canonical’ matrix has
frame in columns
— takes points represented in frame

>
1_

-11 V
— represents them in canonical basis _O 0
—e.g.[00],[1 O],[0 I]
* Seems backward but bears thinking about

Rigid motions

* A transform made up of only translation and rotation is
a rigid motion or a rigid body transformation

* The linear part is an orthonormal matrix
i B
R = «

0 1

* Inverse of orthonormal matrix is transpose

— so inverse of rigid motion is easy:

__O _

v
1p_ |@7 —Qul |@ u
S 1 |0 1

© 2014 Steve Marschner ¢ 24

Transforming points and vectors

* Recall distinction points vs. vectors

— vectors are just offsets (differences between points)

— points have a location

* represented by vector offset from a fixed origin

* Points and vectors transform differently

— points respond to translation; vectors do not

vV=p—q

T(x)=Mx+t

T(p—q)=Mp

t— (Mq

t)

=M(p—q)+(t—t)=Mv

© 2014 Steve Marschner ¢ 25

Affine Composition

* Composition just works, by 3x3 matrix multiplication

Cornell CS4620 Fall 2014 « Lecture 8

Ms ug| |[Mr ur| |p

0

© 2014 Steve Marschner ¢ 26

Affine Composition Example:
Rotation about not-the-origin

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin

— so translate that point to the origin

A

M =T 'RT

© 2014 Steve Marschner * 27

Affine Composition Example:
Rotation about not-the-origin

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin
— so translate that point to the origin

A

M =T 'RT

R R

© 2014 Steve Marschner * 27

Affine Composition Example:
Rotation about not-the-origin

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin
— so translate that point to the origin

A

M =T 'RT

t R

© 2014 Steve Marschner * 27

Affine Composition Example:
Rotation about not-the-origin

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin
— so translate that point to the origin

t M =T 'RT

A

© 2014 Steve Marschner * 27

Similarity Transformations

* When we move an object to the canonical frame to
apply a transformation, we are changing coordinates

— the transformation is easy to express in object’s frame
— so define it there and transform it

T, =FTpF!
— T, is the transformation expressed wrt. {e|, e}

— Tg is the transformation expressed in natural frame

— F is the frame-to-canonical matrix [u v p]

* This is a similarity transformation

Cornell CS4620 Fall 2014 « Lecture 8 © 2014 Steve Marschner * 28

