Computer Graphics

Lecture 15 2D Linear Transformations

Computer Graphics

Lecture 15 2D Linear Transformations

Computer Graphics

Lecture 15 2D Linear Transformations

Announcements

- HW2 due tomorrow!?
- A2 due Monday

Goals

- Have intuition for matrices as
 - Linear functions that map points from one place to another in space.
 - Basis-change machines that convert coordinates expressed in some basis into the canonical basis.
- Know how to construct 2D matrices that perform uniform and nonuniform scaling, reflection, and rotation.
- Know some properties of linear transformations:
 - Linearity, closure under composition, associativity, non-commutativity

Situation: Bunny is sad.

Situation: Bunny is sad.

Bunny is sad because it can't move.

Today: Make bunny happy

- How can we manipulate objects in the scene to
 - put them in the right position?
 - scale them to the right size?
 - orient them in the right direction?

Today: Make bunny happy

- How can we manipulate objects in the scene to
 - put them in the right position?
 - scale them to the right size?
 - orient them in the right direction?

Our answer: matrices.

Geometric Transformations

• To the notes! (This is The notes!)

Goal: a function (mapping) that specifies new
geometry given old geometry.
$$T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$$
 in 2D, or \mathbb{R}^3 for 3D.
Simple example:
 $T(\vec{x}) = \vec{x} + \vec{E}$

We will restrict anselves to Linear T's (Per now)

Meaning:
$$x' = ax + by$$

 $y' = cx + dy$
 $\begin{pmatrix} x' \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
Some Perior on Matrices

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4.5 & 0.5 \end{pmatrix}$$
 is a 2×3 matrix

$$m \times n$$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4.5 & 0.5 \end{bmatrix}$$
 is a 2×3 matrix

$$m \times n$$

Geometric Interpretation $\left[\begin{array}{c} \lambda \\ \lambda \\ \lambda \end{array} \right] = \left[\begin{array}{c} 1 & 1 \\ \gamma & \lambda \\ 1 & 1 \end{array} \right] \left[\begin{array}{c} \Lambda \\ \Lambda \\ \gamma \\ \gamma \end{array} \right]$ $\begin{bmatrix} \chi' \\ y' \end{bmatrix} = \begin{bmatrix} \alpha_{1'} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \begin{bmatrix} \chi \\ y \end{bmatrix}$ Charge of Basis $Mapping: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ Properties of Matrix Multiplication/Linear Transformations

Linear: Tx + Ty = T(x+y) and aTx = T(ax) Associative: ABC = (AB)C = A(BC) Not Commutative: AB = BA Closed under composition: (507) = ST is still a linear Right-to-left application: ABX

© 2014 Steve Marschner •

© 2014 Steve Marschner •

- Reflection
 - can consider it a special case of nonuniform scale

2D Matrix Transformations: Properties

- linear
- closed under composition
- associative
- not commutative
- applied right-to-left