Lecture 10: Barycentric Coordinates and Ray-
Triangle Intersection

We'd like to intersect rays with triangles.

p

One way to do this is to intersect with the plane, then determine whether your position on the plane is within
the triangle. We're going to do it this way, but the math will end up solving both in one go.

Ray-Plane Intersection

To intersect a ray with a plane, we need an equation for the plane; ideally it's an implicit equation. Suppose we
have a plane that goes through a point a and has normal n. (see whiteboard notes) for any 3D point p, the point
lies on the plane if and only if (p - @) dot n equals zero. In fact, (p - @) dot n gives the signed distance between p
and the plane, with positive distances on the same side as the normal and negative on the opposite side.

If we have a triangle a, b, cand we want this representation, we just need to calculate the normal. We've done
this before: we used n = (b-a) x (c - a). For the point on the plane, we'll just use a (we could use any point).

To intersect a ray with a plane, we can plug a point on our parametric ray into the implicit equation for the
plane and solve:

(p+td—a)-(b—a)x(c—a)=0 (1)

The only unknown here is ¢; that can be solved for, then plugged back into the ray equation to get the 3D
coordinates of the intersection. Now all we need is to determine whether this point is inside the triangle. Our
point-in-triangle test from HWO0/AQ is a good place to start thinking about this, but the fact that we're in 3D
complicates things a little. If we're going to use a technique like that, we need to switch to some kind of 2D
representation that's constrained to the plane that the triangle lies in. This brings to mind a general approach



involving finding a 2D basis that spans the plane.

In fact, that's exactly what we're going to do: the approach here is called barycentric coordinates. This is
probably going to seem weird, unnatural, and maybe unnecessary. But if we follow this through, we'll end up
with a single calculation that gives us all of the following three things:

e Where does the ray intersect the triangle's plane?
e Does itintersect inside the triangle?
e What is the weight assigned to each corner of the triangle when interpolating vertex data?

This final one is the kicker: remember that once we hit a point, we need to know surface properties like color,
texture coordinates, normals, etc. On triangle meshes these are usually interpolated from vertex data stored at
the triangle's corners. Expressing the position of the intersection on the plane in barycentric coordinates makes
for a very elegant answer to "how much do | weight the value from each vertex?"

See whiteboard notes for the presentation of barycentric coordinates. Also see section 2.7 of the book.

Super Cool Properties of Barycentric Coordinates

e o+ B+ v =1, nomatter where you are in the plane.

Each coordinate is the scaled signed distance to one of the triangle's edges. That is, the coordinate is 0 at
the edge and 1 at the vertex opposite the edge. In particular:

o «is the fraction of the distance from edge bc to vertex a

o fis the fraction of the distance from edge ac to vertex b

o «is the fraction of the distance from edge ab to vertex ¢
(a, B,7) is inside the triangle iff:

0<ax<l
0<p<l1 (2)
0<y<l1

The coordinates are proportional to the areas of the subtriangles made by p inside the triangle, as a
fraction of the full triangle's area, are proportional to the coordinates - see the picture on the slides.

These coordinates, if we find them, solve ray-triangle intersection using the "inside the triangle" property above.

Moreover, they also solve the vertex-data interpolation problem! The fact that they sum to 1 and are
proportional to subtriangle areas also makes them perfect for smoothly interpolating vertex ata. If we have
some values (e.g., texture coordinates, color values, ...), call them v,, v, v.., stored at each vertex, we can
weight them by their barycentric coordinates to interpolate smoothly anywhere in the triangle:

v = au, + PBup + YU, (3)



Barycentric Ray-Triangle Intersection

A point in the triangle's planeis a + B(b — a) + y(c — a), and a point on the ray is p + td, so we can set
these equal to find the intersection point:

pt+td=a-+fB(b—a)+~y(c—a) (4)
We can rearrange this to:
(a-b)f+(a—c)y+(d)t=a-p (6)

As a reminder, the bold letters are 3-vectors, while 3, v, and ¢ are scalars. With this in mind, we can rewrite this
as a 3D square matrix system:

B
(a-b) (a—-c) d| |v|=|a-P (7)
t

Now, the 3x3 matrix is made up of knowns, the 3-vector of 3, «y, t contains all the unknowns, and the right-hand
side is a 3-vector of known quantities: this has the form Ax = b, which we can solve using standard linear
algebra techniques.

Solving Linear Systems on Computers

In a linear algebra class, the solution to the above would generally be given as x = A~ 1b. On computers,
inverting matrices is a dicey thing to do because of floating-point precision and stability issues. Sometimes you
can ignore this and come out just fine, but a better approach to solving linear systems on computers is to use
standard numerical techniques that don't explicitly compute the inverse. These techniques are neat, and you
should take a numerical linear algebra class and learn all about them, but for our purposes, we can take one of
two approaches. The first is to use Julia's built-in matrix solving operator:

# set up the matrix A with columns a - b, a - ¢, and d

o >
I

# set up the right-hand side 3-vector a-p

A \ b # this solves the system for you!

This may or may not do something smart/fast that's specific to 3x3 matrices. Another approach that is about as
fast as it gets and does not leave efficiency up to the Julia compiler involves using Cramer's rule to solve the
system; this only works on 3x3 matrices (it generalizes, but gets nasty fast) but may end up using fewer flops
than the backslash operator.

You can find a very nice exposition on Cramer's rule and how to implement it efficiently in this setting in section
4.4.2 (Ray-Triangle Intersection) of the textbook.
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