

Computer Graphics

Lecture 7 **General Perspective Cameras Orthographic Cameras**

Announcements

- Grading turnaround target: 1 week
 - It's not realistic to grade HW[i] before A[i] deadline.
 - But you can check your math with classmates (esp. after the HW[i] deadline)
 - And, this is graphics: if you did the math wrong, the results will (probably?) look wrong!

Goals

- Know how to generate viewing rays for general perspective and orthographic cameras
- Know how to construct a camera basis given eye, view, and up vectors.
- Be aware of some common members of the perspective and orthographic families of projections.

Ray Tracing: Pseudocode

for each pixel:

generate a viewing ray for the pixel find the closest object it intersects determine the color of the object

A "canonical" camera

- Eye is at the origin (0, 0, 0)
- Looking down the negative z axis
- Viewport is aligned with the xy plane
- vh = vw = 1
- d = 1

Canonical Perspective Camera: Viewing Rays

$$\underline{\underline{u}} = \frac{j - \frac{1}{2}}{W} - \frac{1}{2}$$

$$\underline{\underline{v}} = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2}\right)$$

Origin (**p**): (0, 0, 0)Direction (**d**): (u, v, -1)

- Eye is at the origin (0, 0, 0)
- Looking down the negative z axis
- Viewport is aligned with the xy plane
- vh = vw = 1
- d = 1

$$u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2}$$
$$v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2}\right)$$

Let's break some assumptions!

- d = 1
- vh = vw = 1
- Eye is at the origin (0, 0, 0)
- Looking down the negative z axis

Origin (**p**): (0, 0, 0) Direction (**d**): (u, v, - $\frac{1}{2}$)

d != 1

$$u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2}$$
$$v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2}\right)$$

Let's break some assumptions!

- d = 1
- vh = vw = 1
- Eye is at the origin (0, 0, 0)
- Looking down the negative z axis

Origin (**p**): (0, 0, 0)
Direction (**d**): (*u*, *v*, -**d**)

$$u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2}$$

$$v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2}\right)$$

Let's break some assumptions!

- d = 1
- vh = vw = 1
- Eye is at the origin (0, 0, 0)
- Looking down the **negative** z axis

Origin (**p**): (0, 0, 0) Direction (**d**): (*u*, *v*, -1)

vw != vw != 1

$$u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2} \text{VW}$$

$$v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2}\right) \cdot \text{Vh}$$

Origin (**p**): (0, 0, 0)

Direction (**d**): (*u*, *v*, -1)

$$u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2}$$
 * vw
$$v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2}\right)$$
 * vh Origin (p): (0, 0, 0) Direction (d): (u, v, -1)

Let's break some assumptions!

- d = 1
- vh = vw = 1
- Eye is at the origin (0, 0, 0)
- Looking down the **negative** z axis

$$u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2}$$

$$v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2}\right)$$

Let's break some assumptions!

- d = 1
- vh = vw = 1
- Eye is at the origin (0, 0, 0)
- Looking down the negative z axis

Origin (**p**): (0, 0, 0) Direction (**d**): (*u*, *v*, -1)

e != (0, 0, 0)

$$u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2}$$

$$v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2}\right)$$

Let's break some assumptions!

- d = 1
- vh = vw = 1
- Eye is at the origin (0, 0, 0)
- Looking down the negative z axis

Origin (\mathbf{p}): (\mathbf{e}_x , \mathbf{e}_y , \mathbf{e}_z) Direction (\mathbf{d}): (u, v, -1)

$$u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2}$$

$$v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2}\right)$$

Let's break some assumptions!

- d = 1
- vh = vw = 1
- Eye is at the origin (0, 0, 0)
- Looking down the negative z axis

Origin (**p**): (0, 0, 0) Direction (**d**): (*u*, *v*, -1)

Change of Basis

Reminder: 3B1B video, and Section 2.4.5 - Orthonormal Bases and Coordinate Frames

If I want to put the camera somewhere else?

The camera's pose is defined by a **coordinate frame**:

- u points right from the eye
- **v** points up from the eye
- w points back from the eye

Problem 1: Give the viewing ray for pixel (i, j) given **e**, **u**, **v**, **w**, *u*, and *v*.

If I want to put the camera somewhere else?

The camera's pose is defined by a **coordinate frame**:

- **u** points right from the **eye**
- **v** points up from the eye
- w points back from the eye

Given this, we can generate a viewing ray as follows:

- 1. Turn (i,j) into *u*, *v* as before
- Viewing ray in (x, y, z) world is:
 origin = eye
 direction = u * u + v * v + -d * w

e, u, v, w : simple math,
 but not very intuitive

 Can we position a camera based on:

- eye
- view direction or point?

- eye position of eye
- view direction direction camera is looking
- up vector points "up" in the scene, but not necessarily in image space.

- eye position of eye
- view direction direction camera is looking
- up vector points "up" in the scene, but not necessarily in image space.

Why do we need this?
To eliminate "roll" ambiguity,
up should be orthogonal to u

- eye position of eye
- view direction direction camera is looking
- up vector points "up" in the scene, but not necessarily in image space.

Why do we need this?
To eliminate "roll" ambiguity,
up should be orthogonal to u

Problem 2: Compute the coordinate frame (**e**, **u**, **v**, **w**) for a camera given its **eye**, **view**, and **up** vectors

Given eye, view, and up:

1.
$$\vec{e} = \vec{e} \vec{y} \vec{e}$$

3. $\vec{v} = \vec{v} \vec{y} \times \vec{v}$

4. $\vec{v} = \vec{v} \times \vec{v}$

2. $\vec{v} = \vec{v} \times \vec{v}$

Perspective Cameras: IRL

Perspective Cameras: IR(ish)L

Thin lens model

Classical Projections: Taxonomy

Classical Projections: Taxonomy

Parallel Projections

- Parallel viewing rays
- Ray origins from pixels
- Camera origin (eye) is on the image plane

Orthographic: viewing rays are perpendicular to projection plane.

i.e., ray direction $\mathbf{d} = -\mathbf{w}$

Funky Parallel Projections

- Parallel viewing rays
- Ray origins from pixels
- Camera origin (eye) is on the image plane

Oblique parallel: viewing rays are *not* perpendicular to projection plane.

W

i.e., ray direction **d** differs from -w

Funky Perspective Projections

Shifted perspective: view direction not the same as the projection plane normal

Funky Perspective Projections: IRL

Funky Perspective Projections: IRL

Perspective distortions

Lengths, length ratios

"foreshortening": object size is inversely related to depth

camera tilted up: converging vertical lines

lens shifted up: parallel vertical lines