Computer Graphics

L ecture 6
Introduction to Ray-Tracing
Cameras and Ray Generation

Goals

 Understand the high-level distinction
between object-order rendering and image-
order rendering.

e Know the mathematical definition of a ray.

 Be able to generate viewing rays for a
canonical perspective camera.

Announcements

e HW1 out, due in 1 week

e Al is out (later today), due Wednesday 10/16.

* A1 is (much) bigger than AO. Please get started early.

e There is one video (13 minutes) to watch for tomorrow
(and it's not me talking at you! £)

e Syllabus ambiguity resolved: homework
resubmissions are allowed within one week of grade
release.

Where were we?

Pseudocode for 3D graphics:

Triangle(a, b, ¢)
Sphere(c, r)

Create a model of a scene meshgen.jl (A1)

Render an image of the model

Where were we?

Pseudocode for 3D graphics:

Create a model of a scene

Render an image of the model

For each pixel:
i1f inside triangle:
color pixel

Two Rendering Algorithms

for each object in the scene { for each pixel in the image {
for each pixel in the image { for each object in the scene {
if (object affects pixel) { if (object affects pixel) {
do something do something
} }
} }
} }
object order image order
or or

rasterization ray tracing

Two Rendering Algorithms

for each object in the scene { for each pixel in the image {
(for each pixel in the Tmage for each object in the scene {
if (object affects pixel) { if (object affects pixel) {

do something do something

) }
})
} }
object order image order
or or
rasterization ray tracing

Q: Which of these did we do in AO?

Two Rendering Algorithms

for each pixel in the image {
for each object in the scene {
if (object affects pixel) {
do something

)
)
)

image order
or
ray tracing

Today: starting here.

How do we make images?

How do we make images?

e IRL:

* pencils, paintbrushes, watercolors, etc
* eyes
e cameras
e On computers:
e MS paint
* manually writing pixel values into Julia arrays

e virtual cameras

." ' P ‘ -\ " *é'
?o‘* : -~ =‘c" “'\ ’. '":'f#- v

‘ T T - . :

The Camera Conundrum:

The world i1s 3D

Images are 2D

we gotta lose a D
somehow

A ray Is half a line.

We'll describe rays using.
* An origin (p) where the ray begins
* A direction (d) in which the ray goes

I‘(t):@+tj .

A ray Is half a line.

We'll describe rays using.
* An origin (p) where the ray begins
* A direction (d) in which the ray goes

* This Iis a parametric equation: it generates points on the line
* The set of points with t > 0 gives all points on the ray

Projections:
ways to lose a D

* The picture-frame method is
called perspective projecti(/
"4
d —

e Key property of perspective:
- all Viewing @ys beggin a ow,(?g:m}
2ue, cent= o& payearion,
Caweron @nged

Projections:
ways to lose a D

N /7),)
e The picture-frame method is N:
called i jecti st
perspective pr0je(‘:/tl(/ g
d —I—T

e Key property of perspective: \
all viewing rays originate at a
single point, the center of
projection, or eye.

Projections:
ways to lose a D

e Another common one Is
parallel projection

e Key property of parallel
projections:

Viewing eys @aatlel

Projections:
ways to lose a D

e Another common one Is
parallel projection

e Key property of parallel
projections:
all viewing rays are parallel

Ray Tracing: Pseudocode

for each pixel:

generate a viewling ray for the pixel

find the closest object it intersects

determine the color of the object

\/
>/-\< light source

viewer (eye)

visible point

objects
in scene

are determined by the position and orientation of the camera
* For perspective projection, viewing rays
originate at the eye.

* The direction varies depending on the pixel.

Let's start with a simple
camera

 Eyeis at the origin (O, O, 0)

* |Looking down the negative z axis

e Viewport is parallel to the xy plane

e vh=vw =1

e d=1

What is the 3D viewing ray for pixel (i, j)?

vh

Whiteboard: (i, j) to (x, y)

- J g>
J~ |
Xz = -_— .
W2 [o
V]
TR : '
-
1 ~—

@rigi\/\ (ﬁ)~
(0,0,0)

dicechon (3):

= (o
< < (% QST\

Y

Viewing rays for the
canonical camera

_
771

Origin (p): (0, 0, 0)
Direction (d): (x, y, -1)

Problems - In groups

. Generate an example viewing ray
Intersect the ray with a plane in the scene

. Generalize camera model by removing
assumptions:

* Eye is not at the origin (O, O, 0)
e vhil=vw!=1

e d!=1

What if | want to point the
camera somewhere else?

The camera's pose is defined
by a coordinate frame:

e U points right from the eye

e v points up from the eye

e W points back from the eye

Given this, we can generate a
viewing ray as follows:

1. Turn (i,j) into u, v instead of x, y (same mathfl: \\:
2. Viewing ray in (X, y, z) world is: o \
origin = eye
directon=u*"u+v*v+-d*w

