
Computer 
Graphics

Lecture 4


Implicit and Parametric Representations 
Triangle Meshes: Texture Coordinates

 



Big Math Idea: 

Implicit vs Parametric 
Representations

Implicit: a property that's true at all points


Parametric: a recipe for generating all points



Implicit vs Parametric: Lines
Implicit:



Implicit vs Parametric: Lines
Parametric:

x

y



Parametric Surfaces
• Sometimes it's useful to have 2D coordinates 

for positions on a 3D surface.

• This is called parameterizing the surface.

• Examples:

• Cartesian coordinates on a 3D plane

• Latitude and longitude on Earth's surface

• Spherical coordinates (θ, ɸ) on a sphere

• Cylindrical coordinates (θ, y) on a cylinder



Example: Earth
Two coordinates 
(lat, lon) identify a 
position in 3D 
space.


This is possible 
because the earth 
is a 2D surface 
(manifold)



Implicit vs Parametric: Planes

x
y

z

Implicit:

Parametric:



Implicit vs Parametric: Sphere

x

y

z

x

y

z





Last time: data on Meshes
• Often we need more than just geometry.


• Many properties vary continuously over a 
smooth surface.



Data on Meshes
• What do we need to store at 

vertices?


• Surface Normals 
to more accurately portray geometry 

• Texture Coordinates 
to paste image data onto surfaces 

• Positions!? 
just another piece of per-vertex data!



Textures
You are here: You wish to be here:

We'd need a bunch more triangles.

Using current machinery: store a color at each vertex and 
interpolate between them.



Textures
You are here: You wish to be here:

We'd need a bunch more triangles.



Textures
• Store spatially varying surface properties:


• color is an intuitive example, but many other things too;  
 
anything that changes over the surface but doesn't 
affect geometry (much)


• roughness, faked lighting effects, normals(!?), bumps



What is a texture?
• A texture is basically a 2D image that stores 

some spatially-varying surface property.
(use color for intuition, but keep in mind it's more general) 

2D grid of values ("texels")

u, v coordinates in [0, 1]



Texture Mapping
• To use this, we need a mapping (function)


• from the surface we're modeling/rendering


• to (u,v) texture coordinates 

• Simplest possible example:  
a 2x2 tabletop in the xz plane


• When rendering, non-vertex points get colors 
via interpolated (u,v) coordinates.



Texture Mapping Function

x

z

y



Modeling the Tabletop
Let's write an OBJ file

x

z

y
v
v
v
v

t
t
t
t

f
f



Texture Mapping: 
nontrivial surfaces

Map from point on sphere to point in (u,v)



A1 sphere - demo



Texturing the Pyramid: 
The Texture Textures aren't necessarily square - still [0, 1]

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 0.5) (1, 0.5)

u

v



Texturing the Pyramid: The 
Texture Mapping Function

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 0.5) (1, 0.5)

u

v

Base

Sides

(apex)



Texturing the Pyramid: The 
Texture Mapping Function

(0, 0) (1, 0)

(0, 1) (1, 1)

(0, 0.5) (1, 0.5)

u

v

Base

Sides

(apex)


