
RENDERING
ISOSURFACES

JOHN-PAUL POWERS & DMITRIY BOGUSH

WHAT IS AN ISOSURFACE?
In the simplest terms, an isosurface is a 3D… surface…

WHAT IS AN ISOSURFACE?
Some function of the form:

All points that give the same value form an isosurface.

For example, an SDF equal to zero.

WHY RENDER THEM?
Because they’re:

Cool:
- Art
- Entertainment

Important:
- Medical Scans
- Visualizing Math

EXAMPLES

Credit: System Era, Astroneer (2019)
LINKLINK

https://www.dgr582.com/images/2020/marching-cubes/astroneer-terrain.gif
https://media.tenor.com/9mdsRZRNb3AAAAAM/astroneer-mountains.gif

EXAMPLES

Credit: Adam Graham Stuart

EXAMPLES

Credit: MANDELWERK LINK
LINK

http://fc00.deviantart.net/fs71/f/2013/045/4/9/touched_by_the_breath_of_your_heartbeat_by_mandelwerk-d5uwb08.gif
https://i0.wp.com/boingboing.net/wp-content/uploads/2018/05/exploding-fractal-01.gif?fit=1&resize=620%2C4000&ssl=1

Okay, but why not raytrace?

RAYTRACING ISOSURFACES
Possible:

To raytrace an isosurface, you need a unique intersection equation

Depending on the isosurface, this can be prohibitively hard and is
not generalized.

RENDERING ISOSURFACES
Two main ways:

Ray-Marching Polygonization

Each has pros and cons; we’ll address them separately

RAY-MARCHING

SIGNED DISTANCE FUNCTION?

RAYMARCHING: MAIN IDEA
As our isosurface (which will likely be an SDF) comes
from a function, this function can be used to evaluate
whether a point is within the surface:
- Inside the surface (negative)
- Outside of the surface (positive)

So, generate points along the ray, then test whether or
not that point is inside.

RAYMARCHING: NAIVE
Procedure:
- Increase t by a fixed amount every time.
- Once the point is inside the surface, average it with

the last point, and return.

Seems easy enough - let’s try it!

RAYMARCHING: NAIVE

function march_ray(p, d, f, step, max_iterations)

t = 0

last_point = p

for i = 1:max_iterations

t += step

point = p+t*d

if f(point) < 0

return (point + last_point)/2

return nothing

RAYMARCHING: NAIVE
Problems:
- With a large step size, the final estimate will be off.

RAYMARCHING: NAIVE
Problems:
- With a small step size, the algorithm becomes too expensive:

Solution? Intelligently select step distance.

RAYMARCHING: DISTANCE ESTIMATION

Remember what we are trying to render: a signed distance function.

By definition, the value of an SDF at a point is the shortest distance
from the surface to said point.

So, when at a given point while ray-marching, we can use the SDF’s
value at the current point to calculate the largest safe step size.

Once the step size drops below a certain threshold, we can then
assume a collision with the surface.

RAYMARCHING: DISTANCE ESTIMATION

march_ray_de(p, d, f, max_iterations)

t = 0

point = p

for i = 1:max_iterations

step = f(point)

if(step < 1e-8)

return point;

t += step

point = p+t*d

return nothing

RAYMARCHING: DISTANCE ESTIMATION

Works pretty well!

Still one problem however…

RAYMARCHING: DISTANCE ESTIMATION

Problem: We are assuming an SDF.

SDF’s are a type of isosurface, but not all isosurfaces are SDF’s.

Take this isosurface:

RAYMARCHING: HYBRID

Instead, we can separate the distance estimator from the
isosurface, and get the best of both worlds.

We do this by finding a simple SDF that bounds our isosurface,
then use that to coarsely estimate the distance.

Plan:
- Use the distance estimator to get as close as possible
- Once the distance estimation drops below a certain threshold,

naively march by small steps until we find a collision.

RAYMARCHING: HYBRID
march_ray_hybrid(p, d, f, de, max_iterations, small_step)

t = 0

point = p

 for i = 1:max_iterations

 step = de(point)

 if(step < small_step)

 last_point = p

 for j = 1:(max_iterations - i)

 t += small_step

 point = p+t*d

 if f(point) < 0

 return (point + last_point)/2

 break;

 t += step

 point = p+t*d

return nothing

RAYMARCHING: HYBRID

RAYMARCHING

Pros:
- Can render any SDF perfectly, no matter how intricate.
- Easy to parallelize (each SDF is a primitive)
- Has solutions for non-SDF isosurfaces

Cons:
- Cannot render discrete data (e.g. Medical Scans)
- SDF’s are not very portable
- Clashes with traditional render pipelines (rasterizers)

BUT WHAT IF WE WANT TO?

ASTRONEER (LINK)

https://content.invisioncic.com/r273157/monthly_2018_05/2041551101_AstroneerGIF-downsized_large(1).gif.df57abf4f773856e2fe684cea549a63f.gif

POLYGANIZATION

POLYGANIZATION: MAIN IDEA
Rendering a triangle is as portable as it is trivial.

So, instead of attempting to render the isosurface
directly, we might try to represent it using a triangle
mesh (polygonization), after which it can be rendered
anywhere!

However, we’ll need to do a little processing before our
isosurface can be polygonized.

POLYGANIZATION: HERMITE DATA
As a triangle mesh is a discrete data type, we will need
to discretize our isosurface.

In the case where our isosurface is already discretized
(such as some kind of medical scan) this step can
more-or-less be skipped.

If it is not, we’ll need to sample it, specifically on a
uniform grid.

POLYGANIZATION: HERMITE DATA

POLYGANIZATION: HERMITE DATA

POLYGANIZATION: HERMITE DATA

Q: Anyone see
a pattern?

POLYGANIZATION: HERMITE DATA

POLYGANIZATION: MARCHING CUBES
The first, and one of the simplest isosurface
polygonization algorithms.

Published by William Lorenson and Harvey Cline in
1987.

POLYGANIZATION: MARCHING CUBES
Step 1:
Consider each cell
(square in 2D, cube in
3D) and the values at its
corners.

POLYGANIZATION: MARCHING CUBES

Step 2:
There are a finite number of ways
these corners can be arranged
(inside/outside the isosurface), and as
such, there is a unique
polygonization for each.

Simply polygonize each cell using
these unique cases (often with a
triangulation table).

Marching Cubes Cases

POLYGANIZATION: MARCHING CUBES

Step 2:

POLYGANIZATION: MARCHING CUBES

Step 3:
Estimate where to place vertices (within the triangulation case) by
linearly interpolating between the hermite data at each end point.

POLYGANIZATION: MARCHING CUBES

Step 3:

POLYGANIZATION: MARCHING CUBES

Once the steps have been completed for every cell, the
polygonization is complete!

POLYGANIZATION: MARCHING CUBES

POLYGANIZATION: MARCHING CUBES

How would marching cubes
polygonize this grid cell?

DC

A B

POLYGANIZATION: MARCHING CUBES

How would marching cubes
polygonize this grid cell?

D

POLYGANIZATION: MARCHING CUBES
Pros:
- Simple and practical.
- Easy to parallelize (each cube is independent)

Cons:
- Somewhat inaccurate: sharp features are lost.
- Many of the cubes can be empty leading to unnecessary flops.

As always, we can do better!

POLYGONIZATION: DUAL CONTOURING

(Mostly) state-of-the-art algorithm for isosurface polygonization
algorithm.

Published by Tao Ju, Frank Losasso, Scott Schaefer, Joe Warren in
2002.

POLYGONIZATION: DUAL CONTOURING
As its name suggests, this is a dual algorithm, specifically to
marching cubes.

While marching cubes chooses vertices along cell boundaries,
dual contouring chooses vertices for the mesh within the cell.

As choosing vertices within cells gives more freedom as
opposed to choosing them along cell boundaries, this leads to
better preservation of sharp features, and overall improved mesh
quality.

POLYGONIZATION: DUAL CONTOURING

POLYGONIZATION: DUAL CONTOURING
Step 1: Take a cell, and along each edge that exhibits a sign
change, calculate the normal.

The normal can easily by using the limit definition of the
derivative (gradient) to see how the value of a point within the
isosurface changes when it’s components (x, y, z) are perturbed
by small values.

POLYGONIZATION: DUAL CONTOURING
Step 1:

POLYGONIZATION: DUAL CONTOURING
Step 2: Find the point within the cell that ‘agrees most’ with the
normals.

This is usually done by solving the least-squares function:

This is quite a bit more complicated than it seems.

POLYGONIZATION: DUAL CONTOURING
Step 2:

POLYGONIZATION: DUAL CONTOURING
Step 3: Connect the vertices in adjacent cells that share a
boundary with a sign change.

In 2D, this is a line, but in 3D, this is a quad.

POLYGONIZATION: DUAL CONTOURING
Step 3:

POLYGONIZATION: DUAL CONTOURING

Do this for the entire grid space, and you are done!
Minus any of the cool stuff:
- Multiple materials within the isosurface mesh
- Octrees and safe mesh simplification (LODs)
- How to solve the QEF in a stable fashion
- Handling manifold meshes.

POLYGONIZATION: DUAL CONTOURING

Marching cubes Dual Contouring

VS.

Summary

Ray-Marching:
- Great for continuous

isosurfaces
- Directly renders isosurfaces
- Can’t render discrete data
- Infinite resolution (for SDFs)

Polygonization:
- Great for discrete data
- Allows isosurfaces to be

used in traditional render
pipelines.

- Discrete triangle meshes,
limited resolution.

QUESTIONS?

REFERENCES
Lorensen, W.E. and Cline, H.E. (1987) “Marching cubes: A high resolution 3D surface construction

algorithm,” ACM SIGGRAPH Computer Graphics, 21(4), pp. 163–169. DOI:10.1145/37402.37422.

Ju, T. et al. (2002) “Dual contouring of Hermite Data,” ACM Transactions on Graphics, 21(3), pp.
339–346. DOI: 10.1145/566654.566586.

Cool Resources:

Lague, S. (2019) Coding adventure: Ray marching, YouTube. YouTube. Available at:
https://www.youtube.com/watch?v=Cp5WWtMoeKg (Accessed: November 30, 2022).

CodeParade (2018) How to make 3D fractals, YouTube. YouTube. Available at:
https://www.youtube.com/watch?v=svLzmFuSBhk (Accessed: November 30, 2022).

https://www.youtube.com/watch?v=Cp5WWtMoeKg
https://www.youtube.com/watch?v=svLzmFuSBhk

