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WHAT IS AN ISOSURFACE?
In the simplest terms, an isosurface is a 3D… surface…



WHAT IS AN ISOSURFACE?
Some function of the form:

All points that give the same value form an isosurface.

For example, an SDF equal to zero.



WHY RENDER THEM?
Because they’re:

Cool:
- Art
- Entertainment

Important:
- Medical Scans
- Visualizing Math



EXAMPLES

Credit: System Era, Astroneer (2019)
LINKLINK

https://www.dgr582.com/images/2020/marching-cubes/astroneer-terrain.gif
https://media.tenor.com/9mdsRZRNb3AAAAAM/astroneer-mountains.gif


EXAMPLES

Credit: Adam Graham Stuart



EXAMPLES

Credit: MANDELWERK LINK
LINK

http://fc00.deviantart.net/fs71/f/2013/045/4/9/touched_by_the_breath_of_your_heartbeat_by_mandelwerk-d5uwb08.gif
https://i0.wp.com/boingboing.net/wp-content/uploads/2018/05/exploding-fractal-01.gif?fit=1&resize=620%2C4000&ssl=1


Okay, but why not raytrace?



RAYTRACING ISOSURFACES
Possible:

To raytrace an isosurface, you need a unique intersection equation

Depending on the isosurface, this can be prohibitively hard and is 
not generalized.



RENDERING ISOSURFACES
Two main ways:

Ray-Marching Polygonization

Each has pros and cons; we’ll address them separately



RAY-MARCHING



SIGNED DISTANCE FUNCTION? 



RAYMARCHING: MAIN IDEA
As our isosurface (which will likely be an SDF) comes 
from a function, this function can be used to evaluate 
whether a point is within the surface: 
- Inside the surface (negative)
- Outside of the surface (positive)

So, generate points along the ray, then test whether or 
not that point is inside.



RAYMARCHING: NAIVE
Procedure:
- Increase t by a fixed amount every time.
- Once the point is inside the surface, average it with 

the last point, and return.

Seems easy enough - let’s try it!



RAYMARCHING: NAIVE

function march_ray(p, d, f, step, max_iterations)

t = 0

last_point = p

for i = 1:max_iterations

t += step

point = p+t*d

if f(point) < 0

return (point + last_point)/2

return nothing



RAYMARCHING: NAIVE
Problems:
- With a large step size, the final estimate will be off.



RAYMARCHING: NAIVE
Problems:
- With a small step size, the algorithm becomes too expensive:

Solution? Intelligently select step distance.



RAYMARCHING: DISTANCE ESTIMATION

Remember what we are trying to render: a signed distance function.

By definition, the value of an SDF at a point is the shortest distance 
from the surface to said point.

So, when at a given point while ray-marching, we can use the SDF’s 
value at the current point to calculate the largest safe step size.

Once the step size drops below a certain threshold, we can then 
assume a collision with the surface.



RAYMARCHING: DISTANCE ESTIMATION

march_ray_de(p, d, f, max_iterations)

t = 0

point = p

for i = 1:max_iterations

step = f(point)

if(step < 1e-8)

return point;

t += step

point = p+t*d

return nothing



RAYMARCHING: DISTANCE ESTIMATION

Works pretty well!

Still one problem however…



RAYMARCHING: DISTANCE ESTIMATION

Problem: We are assuming an SDF.

SDF’s are a type of isosurface, but not all isosurfaces are SDF’s.

Take this isosurface:



RAYMARCHING: HYBRID

Instead, we can separate the distance estimator from the 
isosurface, and get the best of both worlds.

We do this by finding a simple SDF that bounds our isosurface, 
then use that to coarsely estimate the distance.

Plan:
- Use the distance estimator to get as close as possible
- Once the distance estimation drops below a certain threshold, 

naively march by small steps until we find a collision.



RAYMARCHING: HYBRID
march_ray_hybrid(p, d, f, de, max_iterations, small_step)

t = 0

point = p

    for i = 1:max_iterations 

        step = de(point)

        if(step < small_step)

            last_point = p

            for j = 1:(max_iterations - i)

                t += small_step

                point = p+t*d

                    if f(point) < 0

                        return (point + last_point)/2

            break;

        t += step

        point = p+t*d

return nothing



RAYMARCHING: HYBRID



RAYMARCHING

Pros:
- Can render any SDF perfectly, no matter how intricate.
- Easy to parallelize (each SDF is a primitive)
- Has solutions for non-SDF isosurfaces

Cons:
- Cannot render discrete data (e.g. Medical Scans) 
- SDF’s are not very portable
- Clashes with traditional render pipelines (rasterizers)



BUT WHAT IF WE WANT TO? 

ASTRONEER (LINK)

https://content.invisioncic.com/r273157/monthly_2018_05/2041551101_AstroneerGIF-downsized_large(1).gif.df57abf4f773856e2fe684cea549a63f.gif


POLYGANIZATION



POLYGANIZATION: MAIN IDEA
Rendering a triangle is as portable as it is trivial.

So, instead of attempting to render the isosurface 
directly, we might try to represent it using a triangle 
mesh (polygonization), after which it can be rendered 
anywhere!

However, we’ll need to do a little processing before our 
isosurface can be polygonized.



POLYGANIZATION: HERMITE DATA
As a triangle mesh is a discrete data type, we will need 
to discretize our isosurface.

In the case where our isosurface is already discretized  
(such as some kind of medical scan) this step can 
more-or-less be skipped. 

If it is not, we’ll need to sample it, specifically on a 
uniform grid.



POLYGANIZATION: HERMITE DATA



POLYGANIZATION: HERMITE DATA



POLYGANIZATION: HERMITE DATA

Q: Anyone see 
a pattern?



POLYGANIZATION: HERMITE DATA



POLYGANIZATION: MARCHING CUBES
The first, and one of the simplest isosurface 
polygonization algorithms.

Published by William Lorenson and Harvey Cline in 
1987.



POLYGANIZATION: MARCHING CUBES
Step 1: 
Consider each cell 
(square in 2D, cube in 
3D) and the values at its 
corners.



POLYGANIZATION: MARCHING CUBES

Step 2:
There are a finite number of ways 
these corners can be arranged 
(inside/outside the isosurface), and as 
such, there is a unique 
polygonization for each. 

Simply polygonize each cell using 
these unique cases (often with a 
triangulation table).

Marching Cubes Cases



POLYGANIZATION: MARCHING CUBES

Step 2:



POLYGANIZATION: MARCHING CUBES

Step 3:
Estimate where to place vertices (within the triangulation case) by 
linearly interpolating between the hermite data at each end point.



POLYGANIZATION: MARCHING CUBES

Step 3:



POLYGANIZATION: MARCHING CUBES

Once the steps have been completed for every cell, the 
polygonization is complete!



POLYGANIZATION: MARCHING CUBES



POLYGANIZATION: MARCHING CUBES

How would marching cubes 
polygonize this grid cell?

DC

A B



POLYGANIZATION: MARCHING CUBES

How would marching cubes 
polygonize this grid cell?

D



POLYGANIZATION: MARCHING CUBES
Pros:
- Simple and practical.
- Easy to parallelize (each cube is independent)

Cons:
- Somewhat inaccurate: sharp features are lost. 
- Many of the cubes can be empty leading to unnecessary flops. 

As always, we can do better!



POLYGONIZATION: DUAL CONTOURING 

(Mostly) state-of-the-art algorithm for isosurface polygonization 
algorithm.

Published by Tao Ju, Frank Losasso, Scott Schaefer, Joe Warren in 
2002.



POLYGONIZATION: DUAL CONTOURING 
As its name suggests, this is a dual algorithm, specifically to 
marching cubes.

While marching cubes chooses vertices along cell boundaries, 
dual contouring chooses vertices for the mesh within the cell.

As choosing vertices within cells gives more freedom as 
opposed to choosing them along cell boundaries, this leads to 
better preservation of sharp features, and overall improved mesh 
quality.



POLYGONIZATION: DUAL CONTOURING 



POLYGONIZATION: DUAL CONTOURING 
Step 1: Take a cell, and along each edge that exhibits a sign 
change, calculate the normal. 

The normal can easily by using the limit definition of the 
derivative (gradient) to see how the value of a point within the 
isosurface changes when it’s components (x, y, z) are perturbed 
by small values.



POLYGONIZATION: DUAL CONTOURING 
Step 1: 



POLYGONIZATION: DUAL CONTOURING 
Step 2: Find the point within the cell that ‘agrees most’ with the 
normals.

This is usually done by solving the least-squares function:

This is quite a bit more complicated than it seems.



POLYGONIZATION: DUAL CONTOURING 
Step 2: 



POLYGONIZATION: DUAL CONTOURING 
Step 3: Connect the vertices in adjacent cells that share a 
boundary with a sign change.

In 2D, this is a line, but in 3D, this is a quad.



POLYGONIZATION: DUAL CONTOURING 
Step 3:



POLYGONIZATION: DUAL CONTOURING 

Do this for the entire grid space, and you are done!
Minus any of the cool stuff:
- Multiple materials within the isosurface mesh
- Octrees and safe mesh simplification (LODs)
- How to solve the QEF in a stable fashion
- Handling manifold meshes.



POLYGONIZATION: DUAL CONTOURING 

Marching cubes Dual Contouring 

VS.



Summary

Ray-Marching: 
- Great for continuous 

isosurfaces
- Directly renders isosurfaces
- Can’t render discrete data
- Infinite resolution (for SDFs)

Polygonization: 
- Great for discrete data
- Allows isosurfaces to be 

used in traditional render 
pipelines.

- Discrete triangle meshes, 
limited resolution.



QUESTIONS? 
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Cool Resources:

Lague, S. (2019) Coding adventure: Ray marching, YouTube. YouTube. Available at: 
https://www.youtube.com/watch?v=Cp5WWtMoeKg (Accessed: November 30, 2022).

CodeParade (2018) How to make 3D fractals, YouTube. YouTube. Available at: 
https://www.youtube.com/watch?v=svLzmFuSBhk (Accessed: November 30, 2022).

https://www.youtube.com/watch?v=Cp5WWtMoeKg
https://www.youtube.com/watch?v=svLzmFuSBhk

