Announcements

• MS1 tonight

• Class tomorrow in CF 420 - spline lab!
Goals

• Be able to derive the basis matrix for cubic Bézier curves.

• Understand why it's called the basis matrix

• Understand some geometric properties of Bézier splines:
 • Evaluation by linear interpolation
 • Subdivision and drawing using de Casteljau's algorithm
Beziers Curves: Demo

• https://celloexpressions.com/geometry/bezier-curves-splines/560.html

• or

• https://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html
Why is it called a "Basis Matrix"?

• We have: \(f(u) = u^T B p \)

• For computational purposes, we'll want to precompute \(B p \).

 • This is the vector of \(a_i \)'s that weights each power of \(u \)

• How would we interpret \(u^T B \)?

 • A polynomial that specifies the weight on each control point.
Blending Functions
Cubic Bezier blending functions

\[b_0(u) = (1 - u)^3 \]
\[b_1(u) = 3u(1 - u)^2 \]
\[b_2(u) = 3u^2(1 - u) \]
\[b_3(u) = u^3 \]
Bezier Curves: Geometry
Coolest / most satisfying animation of the quarter

https://www.jasondavies.com/animated-bezier/