

Computer Graphics

Lecture 30 Bézier Curves de Casteljau's Algorithm

Announcements

- MS1 tonight
- Class tomorrow in CF 420 spline lab!

Goals

- Be able to derive the basis matrix for cubic Bézier curves.
- Understand why it's called the basis matrix
- Understand some geometric properties of Bézier splines:
 - Evaluation by linear interpolation
 - Subdivision and drawing using de Casteljau's algorithm

Bezier Curves: Demo

- <u>https://celloexpressions.com/geometry/</u>
 <u>bezier-curves-splines/560.html</u>
- or
- <u>https://math.hws.edu/eck/cs424/</u> notes2013/canvas/bezier.html

Why is it called a "Basis Matrix"?

- We have: $f(u) = \mathbf{u}^T B \mathbf{p}$
- For computational purposes, we'll want to precompute Bp.
 - This is the vector of a_i 's that weights each power of u
- How would we interpret $\mathbf{u}^{\mathrm{T}}B$?
 - A polynomial that specifies the weight on each control point.

Blending Functions

Cubic Bezier blending functions

Bezier Curves: Geometry

Coolest / most satisfying animation of the quarter

https://www.jasondavies.com/animated-bezier/