Computer Graphics

Lecture 23
Shading in the Graphics Pipeline

Announcements

e Class tomorrow in CF 420 - OpenGL Lab

e Artifact voting is open through tomorrow
night.

Graphics Pipeline: Overview

you are here wmp

3D transformations; shading =s§» VERTEX PROCESSING

conversion of primitives to pixels

blending, compositing, shading == FRAGMEN

ROCESSING

user sees this ==

Last time

you are here mmp-

3D transformations; shading > VERTEX PROCESSING

Backface culling
Clipping

conversion of primitives to pixels mmp-

blending, compositing, shading = FRAGMEN

ROCESSING Z buffering

user sees this

Graphics Pipeline: Overview

you are here wmp

3D transformations; shading =s§» VERTEX PROCESSING

conversion of primitives to pixels

blending, compositing, shading == FRAGMEN

ROCESSING

user sees this ==

OpenGL: One implementation
of the graphics pipeline.

And now: a highly abridged and only
somewhat accurate history of OpenGL.

OpenGL: The Bad Old Days

e OpenGL was (still is) a state machine.

e Basic usage:

1.

2.

Set flags for shading mode

Set model, view, and projection matrices
Set GL to triangle mode

Send vertices to GPU one at a time.

Call draw function to draw to the screen.

glMatrixMode (GL PROJECTION) ;
glLoadIdentity();
glMatrixMode (GL MODELVIEW) ;
glLoadIdentity();

glBegin(GL TRIANGLES);
glvertex2f(-0.5f, -0.5f);
glvertex2f(0.5f, -0.5f);
glvertex2f(0.5f, 0.5f);
glEnd();

OpenGL: Nowadays

* Send buffers full of data to GPU up front.
e Tell GL how to interpret them (triangles, line segments, ...)

* GL executes custom-written vertex shader program on each

vertex (to determine is location in clip space) =normalized device
coordinates

* GL rasterizes primitives into pixel-shaped fragments

* GL executes custom-written fragment shader program on
each fragment to determine its color.

 GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

OpenGL: Your job, conceptually

(send geometry)
e [Send buffers full of data to GPU up front.

e [Tell GL how to interpret them (triangles, ...)

(write vertex shader]

* GL executes custom-written‘vertex shader program |on each

vertex (to determine its location in clip space) =normalized device
coordinates

* GL rasterizes primitives into pixel-shaped fragments

(write fragment shader)

* GL executes custom-written|fragment shader program‘on
each fragment to determine its color.

e GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

Pipeline for minimal operation

* Vertex stage (input: position / vtx; color / tri)
— transform position (object to screen space)
— pass through color

* Rasterizer
— pass through color

* Fragment stage (output: color)

— write to color planes

© 2014 Steve Marschner * 10

Result of minimal pipeline

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci4d80 22f/pipeline_demo/

© 2014 Steve Marschner * 1|1

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_22f/pipeline_demo/

Rendering Realistic Images

 \We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

e Tomorrow we'll learn how to get data in and
out

e How do we realistic-looking images using
shading models like Lambertian and Blinn-
Phong?

Rendering Realistic Images

 \We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

e Tomorrow we'll learn how to get data in and
out

e How do we realistic-looking images using
shading models like Lambertian and Blinn-
Phong?

but first, a rant about terminology

Phong shading Blinn-Phong
shading in the fragment shader

 Shade (v.): determine color of a pixel
basically all of computer graphics...

 Shader (n.): a program that runs on GPU
vertex shader, fragment shader

e Shading model (reflection or illumination model):

light interaction model that determines a pixel's color
Lambertian reflection, Blinn-Phong reflection

e Shading algorithm (interpolation technique):
when, and in which shader, is the reflection model
computed, and using what normals?
flat shading, Gouraud shading, Phong shading

Let's call this "not shading™

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci4d80 22f/pipeline_demo/

© 2014 Steve Marschner * 15

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_22f/pipeline_demo/

Flat shading (interpolation)

Shade using the real normal of the triangle

— same result as ray tracing a bunch of triangles without
normal interpolation

* Leads to constant shading and faceted appearance

— truest view of the
mesh geometry

[Foley et al.]

. polygons with diffuse reflection (Sections 14.4.2
and 16.2.3). (Copynght@ 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
Pixar’s PhotoRealistic RenderMan™ software.)

© 2014 Steve Marschner * 16

Pipeline for flat shading

* Vertex stage (input: position / vtx; color and normal / tri)
— transform position and normal (object to eye space)
— compute shaded color per triangle using normal
— transform position (eye to screen space)

* Rasterizer
— interpolated parameters: z’ (screen z)
— pass through color

* Fragment stage (output: color, z’)

— write to color planes only if interpolated z’ < current z’

© 2014 Steve Marschner » 17

Result of flat-shading pipeline

© 2014 Steve Marschner * 18

Summary: Shading and Interpolation Techniques

Vertex Shader

p, N, | --> cam space
color = n * | * vtx_color
p --> Screen space

p, N, | --> cam space
elo]i[=11[e M color = n * | * vix_color
p --> screen space

Interpolation

p, N, | --> cam space
p --> Screen space
pass through vtx_color

Pipeline Stage

Rasterizer

Fragment Shader

Write color if z buffer
says so

Write color if z buffer
says so

color =n * | * frag_color
Write color if z buffer
says so

Gouraud shading

* Often we're trying to draw
smooth surfaces, so facets
are an artifact

- C O m P Ute C O I O rs a,t Plate I1.30 Shutterbug. Gouraud shaded polygons with diffuse reflection (Sections 14.4.3

and 16.2.4). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
Pixar's PhotoRealistic RenderMan™ software.)

vertices using
vertex normals

— interpolate colors
across triangles

’

— “Gouraud shading’
— “Smooth shading”

[Foley et al.]

: teve Marschner ¢ 20

Pipeline for Gouraud shading

* Vertex stage (input: position, color, and normal / vtx)
— transform position and normal (object to eye space)
— compute shaded color per vertex
— transform position (eye to screen space)

e Rasterizer

— interpolated parameters: z’ (screen z);r, g, b color

* Fragment stage (output: color, z°)

— write to color planes only if interpolated z’ < current z’

© 2014 Steve Marschner » 21

Result of Gouraud shading pipeline

Demo

© 2014 Steve Marschner » 22

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

Summary: Shading and Interpolation Techniques

Vertex Shader

p, N, | --> cam space
color = n * | * vtx_color
p --> Screen space

p, N, | --> cam space
elo]i[=11[e M color = n * | * vix_color
p --> screen space

Interpolation

p, N, | --> cam space
p --> Screen space
pass through vtx_color

Pipeline Stage

Rasterizer

Interpolate z'

Fragment Shader

Write color if z buffer
says so

Write color if z buffer
says so

color =n * | * frag_color
Write color if z buffer
says so

o~ //
//'\\

Some possible efficiency hacks:

* Blinn-Phong model requires
knowing

— normal <
— light direction
— view direction

* Hack: use directional lights so £
doesn't change

* Hack: pretend viewer is <
infinitely distant so view
direction doesn't change either

© 2014 Steve Marschner » 24

Non-diffuse Gouraud shading

* Can apply Gouraud shading to any illumination model
— it’s just an interpolation method

* Results are not so good with fast-varying models like
specular ones

— problems with any
highlights smaller
than a triangle

— (demo)

[Foley et al.]

Plate 11.31 Shutterbug. Gouraud shaded polygons with specular reflection (Sections 14.4.
#nd 16.2.5). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
Pixar's PhotoRealistic RenderMan™ software.)

© 2014 Steve Marschner * 25

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_20w/pipeline_demo/

(*not the same thing as Blinn-Phong reflection)

Per-pixel (Phong+) shading

* Get higher quality by interpolating the normal
— just as easy as interpolating the color

— but now we are evaluating the illumination model per pixel
rather than per vertex (and normalizing the normal first)

— in pipeline, this means we are moving illumination from the
vertex processing stage to the fragment processing stage

© 2014 Steve Marschner * 26

Per-pixel (Phong) shading

* Bottom line: produces much better highlights

Plate 11.32 Shutterbug. Phong shaded polygons with specular reflection (Sections 14.4.4 and

18.2.5). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar’'s
#hotoRealistic RenderMan™ software.)

[Foley et al.]

tterbug. Gouraud shaded polygons with specular reflection (Sections 14.4.4
yright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
listic RenderMan™ software.)

© 2014 Steve Marschner » 27

Pipeline for per-pixel shading

* Vertex stage (input: position, color, and normal / vtx)
— transform position and normal (object to eye space)
— transform position (eye to screen space)
— pass through color

e Rasterizer

— interpolated parameters: z’ (screen z);r, g, b color; x, y, z
normal

* Fragment stage (output: color, z)
— compute shading using interpolated color and normal
— write to color planes only if interpolated z’ < current z’

© 2014 Steve Marschner » 28

Result of per-pixel shading pipeline

(demo)

© 2014 Steve Marschner » 29

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

Summary: Shading and Interpolation Techniques

Vertex Shader

p, N, | --> cam space
color = n * | * vtx_color
p --> Screen space

p, N, | --> cam space
elo]i[=11[e M color = n * | * vix_color
p --> screen space

Interpolation

p, N, | --> cam space
p --> Screen space
pass through vtx_color

Pipeline Stage

Rasterizer

Fragment Shader

Write color if z buffer
says so

Write color if z buffer
says so

color =n * | * frag_color
Write color if z buffer
says so

Summary: Shading and Interpolation Techniques
reflection
Lambertian Blinn-phong

—

- \)
v

Gouraud

-
O
g
©
@,
O
| -
O
e
E=

Summary: Shading and Interpolation Techniques

Vertex Shader

p, N, | --> cam space
color = n * | * vtx_color
p --> Screen space

p, N, | --> cam space
elo]i[=11[e M color = n * | * vix_color
p --> screen space

Interpolation

p, N, | --> cam space
p --> Screen space
pass through vtx_color

Pipeline Stage

Rasterizer

Interpolate z'
Pass through color

Interpolate z'
Interpolate color

Interpolate z'
Interpolate vtx_color
Interpolate normal

Fragment Shader

Write color if z buffer
says so

Write color if z buffer
says so

color =n * | * frag_color
Write color if z buffer
says so

