
Computer Graphics
Lecture 23


Shading in the Graphics Pipeline



Announcements
• Class tomorrow in CF 420 - OpenGL Lab


• Artifact voting is open through tomorrow 
night.
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OpenGL: One implementation 
of the graphics pipeline.

And now: a highly abridged and only 
somewhat accurate history of OpenGL.



OpenGL: The Bad Old Days
• OpenGL was (still is) a state machine.


• Basic usage:


1. Set flags for shading mode


2. Set model, view, and projection matrices


3. Set GL to triangle mode


4. Send vertices to GPU one at a time.


5. Call draw function to draw to the screen.

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glBegin(GL_TRIANGLES); 
glVertex2f( -0.5f, -0.5f ); 
glVertex2f( 0.5f, -0.5f ); 
glVertex2f( 0.5f, 0.5f ); 
glEnd();



OpenGL: Nowadays
• Send buffers full of data to GPU up front.


• Tell GL how to interpret them (triangles, line segments, ...)


• GL executes custom-written vertex shader program on each 
vertex (to determine is location in clip space) 


• GL rasterizes primitives into pixel-shaped fragments


• GL executes custom-written fragment shader program on 
each fragment to determine its color.


• GL writes fragment colors to framebuffer pixels; neat things 
appear on your screen.

= normalized device  
coordinates



OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.


• Tell GL how to interpret them (triangles, ...)


• GL executes custom-written vertex shader program on each 
vertex (to determine its location in clip space) 


• GL rasterizes primitives into pixel-shaped fragments 

• GL executes custom-written fragment shader program on 
each fragment to determine its color.


• GL writes fragment colors to framebuffer pixels; neat things 
appear on your screen.

= normalized device  
coordinates

(send geometry)

(write vertex shader)

(write fragment shader)
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Pipeline for minimal operation

• Vertex stage (input: position / vtx; color / tri)
– transform position (object to screen space)
– pass through color

• Rasterizer 
– pass through color

• Fragment stage (output: color)
– write to color planes

10



© 2014 Steve Marschner • 

Result of minimal pipeline

11

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_22f/pipeline_demo/

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_22f/pipeline_demo/


Rendering Realistic Images 

• We have a pipeline that gives us access to 
the compute power of shaders and does a 
bunch of nice things for us.


• Tomorrow we'll learn how to get data in and 
out


• How do we realistic-looking images using 
shading models like Lambertian and Blinn-
Phong?



• We have a pipeline that gives us access to 
the compute power of shaders and does a 
bunch of nice things for us.


• Tomorrow we'll learn how to get data in and 
out


• How do we realistic-looking images using 
shading models like Lambertian and Blinn-
Phong?

Rendering Realistic Images 

but first, a rant about terminology



Phong shading Blinn-Phong 
shading in the fragment shader
• Shade (v.): determine color of a pixel


• Shader (n.): a program that runs on GPU


• Shading model (reflection or illumination model): 
light interaction model that determines a pixel's color


• Shading algorithm (interpolation technique): 
when, and in which shader, is the reflection model 
computed, and using what normals?

vertex shader, fragment shader

Lambertian reflection, Blinn-Phong reflection

flat shading, Gouraud shading, Phong shading

basically all of computer graphics...
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Let's call this "not shading"
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https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_22f/pipeline_demo/
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Flat shading (interpolation)

• Shade using the real normal of the triangle
– same result as ray tracing a bunch of triangles without 

normal interpolation

• Leads to constant shading and faceted appearance
– truest view of the  

mesh geometry
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Pipeline for flat shading

• Vertex stage (input: position / vtx; color and normal / tri)
– transform position and normal (object to eye space)
– compute shaded color per triangle using normal
– transform position (eye to screen space)

• Rasterizer 
– interpolated parameters: z’ (screen z)
– pass through color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

17
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Result of flat-shading pipeline
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Summary: Shading and Interpolation Techniques

Vertex Shader Rasterizer Fragment Shader

Flat
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Write color if z buffer 
says so

Gouraud
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Write color if z buffer 
says so

Phong
p, n, l --> cam space

p --> screen space

pass through vtx_color

color = n * l * frag_color

Write color if z buffer 
says so

In
te

rp
ol

at
io

n
Pipeline Stage
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Gouraud shading
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• Often we’re trying to draw  
smooth surfaces, so facets  
are an artifact
– compute colors at  

vertices using  
vertex normals

– interpolate colors  
across triangles

– “Gouraud shading”
– “Smooth shading”

20
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Pipeline for Gouraud shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– compute shaded color per vertex
– transform position (eye to screen space)

• Rasterizer 
– interpolated parameters: z’ (screen z); r, g, b color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

21
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Result of Gouraud shading pipeline

22
Demo

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/


Summary: Shading and Interpolation Techniques

Vertex Shader Rasterizer Fragment Shader

Flat
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Interpolate z' Write color if z buffer 
says so

Gouraud
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Write color if z buffer 
says so

Phong
p, n, l --> cam space

p --> screen space

pass through vtx_color

color = n * l * frag_color

Write color if z buffer 
says so
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Some possible efficiency hacks:
• Blinn-Phong model requires 

knowing
– normal
– light direction
– view direction

• Hack: use directional lights so 
doesn't change

• Hack: pretend viewer is 
infinitely distant so view 
direction doesn't change either

ℓ
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Non-diffuse Gouraud shading

• Can apply Gouraud shading to any illumination model
– it’s just an interpolation method

• Results are not so good with fast-varying models like 
specular ones
– problems with any 

highlights smaller 
than a triangle

– (demo)

[F
ol

ey
 e

t 
al

.]

25

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_20w/pipeline_demo/
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Per-pixel (Phong*) shading

• Get higher quality by interpolating the normal
– just as easy as interpolating the color
– but now we are evaluating the illumination model per pixel 

rather than per vertex (and normalizing the normal first)
– in pipeline, this means we are moving illumination from the 

vertex processing stage to the fragment processing stage

26

(*not the same thing as Blinn-Phong reflection)
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Per-pixel (Phong) shading

• Bottom line: produces much better highlights
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Pipeline for per-pixel shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– transform position (eye to screen space)
– pass through color

• Rasterizer 
– interpolated parameters: z’ (screen z); r, g, b color; x, y, z 

normal

• Fragment stage (output: color, z’)
– compute shading using interpolated color and normal
– write to color planes only if interpolated z’ < current z’

28
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Result of per-pixel shading pipeline

29(demo)

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/


Summary: Shading and Interpolation Techniques

Vertex Shader Rasterizer Fragment Shader

Flat
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Write color if z buffer 
says so

Gouraud
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Write color if z buffer 
says so

Phong
p, n, l --> cam space

p --> screen space

pass through vtx_color

color = n * l * frag_color

Write color if z buffer 
says so
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Summary: Shading and Interpolation Techniques

Lambertian Blinn-phong

Flat

Gouraud

Phong
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Summary: Shading and Interpolation Techniques

Vertex Shader Rasterizer Fragment Shader

Flat
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Interpolate z'

Pass through color

Write color if z buffer 
says so

Gouraud
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Interpolate z'

Interpolate color

Write color if z buffer 
says so

Phong
p, n, l --> cam space

p --> screen space

pass through vtx_color

Interpolate z'

Interpolate vtx_color

Interpolate normal

color = n * l * frag_color

Write color if z buffer 
says so
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