
Computer Graphics
Lecture 23

Shading in the Graphics Pipeline

Announcements
• Class tomorrow in CF 420 - OpenGL Lab

• Artifact voting is open through tomorrow
night.

Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

Last time
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

Backface culling
Clipping

Z buffering

Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

OpenGL: One implementation
of the graphics pipeline.

And now: a highly abridged and only
somewhat accurate history of OpenGL.

OpenGL: The Bad Old Days
• OpenGL was (still is) a state machine.

• Basic usage:

1. Set flags for shading mode

2. Set model, view, and projection matrices

3. Set GL to triangle mode

4. Send vertices to GPU one at a time.

5. Call draw function to draw to the screen.

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glBegin(GL_TRIANGLES);
glVertex2f(-0.5f, -0.5f);
glVertex2f(0.5f, -0.5f);
glVertex2f(0.5f, 0.5f);
glEnd();

OpenGL: Nowadays
• Send buffers full of data to GPU up front.

• Tell GL how to interpret them (triangles, line segments, ...)

• GL executes custom-written vertex shader program on each
vertex (to determine is location in clip space)

• GL rasterizes primitives into pixel-shaped fragments

• GL executes custom-written fragment shader program on
each fragment to determine its color.

• GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

= normalized device  
coordinates

OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.

• Tell GL how to interpret them (triangles, ...)

• GL executes custom-written vertex shader program on each
vertex (to determine its location in clip space)

• GL rasterizes primitives into pixel-shaped fragments 

• GL executes custom-written fragment shader program on
each fragment to determine its color.

• GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

= normalized device  
coordinates

(send geometry)

(write vertex shader)

(write fragment shader)

© 2014 Steve Marschner •

Pipeline for minimal operation

• Vertex stage (input: position / vtx; color / tri)
– transform position (object to screen space)
– pass through color

• Rasterizer
– pass through color

• Fragment stage (output: color)
– write to color planes

10

© 2014 Steve Marschner •

Result of minimal pipeline

11

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_22f/pipeline_demo/

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_22f/pipeline_demo/

Rendering Realistic Images

• We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

• Tomorrow we'll learn how to get data in and
out

• How do we realistic-looking images using
shading models like Lambertian and Blinn-
Phong?

• We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

• Tomorrow we'll learn how to get data in and
out

• How do we realistic-looking images using
shading models like Lambertian and Blinn-
Phong?

Rendering Realistic Images

but first, a rant about terminology

Phong shading Blinn-Phong
shading in the fragment shader
• Shade (v.): determine color of a pixel

• Shader (n.): a program that runs on GPU

• Shading model (reflection or illumination model): 
light interaction model that determines a pixel's color

• Shading algorithm (interpolation technique): 
when, and in which shader, is the reflection model
computed, and using what normals?

vertex shader, fragment shader

Lambertian reflection, Blinn-Phong reflection

flat shading, Gouraud shading, Phong shading

basically all of computer graphics...

© 2014 Steve Marschner •

Let's call this "not shading"

15

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_22f/pipeline_demo/

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_22f/pipeline_demo/

© 2014 Steve Marschner •

Flat shading (interpolation)

• Shade using the real normal of the triangle
– same result as ray tracing a bunch of triangles without

normal interpolation

• Leads to constant shading and faceted appearance
– truest view of the  

mesh geometry

[F
ol

ey
 e

t
al

.]

16

© 2014 Steve Marschner •

Pipeline for flat shading

• Vertex stage (input: position / vtx; color and normal / tri)
– transform position and normal (object to eye space)
– compute shaded color per triangle using normal
– transform position (eye to screen space)

• Rasterizer
– interpolated parameters: z’ (screen z)
– pass through color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

17

© 2014 Steve Marschner •

Result of flat-shading pipeline

18

Summary: Shading and Interpolation Techniques

Vertex Shader Rasterizer Fragment Shader

Flat
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Write color if z buffer
says so

Gouraud
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Write color if z buffer
says so

Phong
p, n, l --> cam space

p --> screen space

pass through vtx_color

color = n * l * frag_color

Write color if z buffer
says so

In
te

rp
ol

at
io

n
Pipeline Stage

© 2014 Steve Marschner •

[G
ou

ra
ud

 t
he

si
s]

Gouraud shading

[F
ol

ey
 e

t
al

.]

• Often we’re trying to draw  
smooth surfaces, so facets  
are an artifact
– compute colors at  

vertices using  
vertex normals

– interpolate colors  
across triangles

– “Gouraud shading”
– “Smooth shading”

20

© 2014 Steve Marschner •

Pipeline for Gouraud shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– compute shaded color per vertex
– transform position (eye to screen space)

• Rasterizer
– interpolated parameters: z’ (screen z); r, g, b color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

21

© 2014 Steve Marschner •

Result of Gouraud shading pipeline

22
Demo

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

Summary: Shading and Interpolation Techniques

Vertex Shader Rasterizer Fragment Shader

Flat
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Interpolate z' Write color if z buffer
says so

Gouraud
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Write color if z buffer
says so

Phong
p, n, l --> cam space

p --> screen space

pass through vtx_color

color = n * l * frag_color

Write color if z buffer
says so

In
te

rp
ol

at
io

n
Pipeline Stage

© 2014 Steve Marschner •

Some possible efficiency hacks:
• Blinn-Phong model requires

knowing
– normal
– light direction
– view direction

• Hack: use directional lights so
doesn't change

• Hack: pretend viewer is
infinitely distant so view
direction doesn't change either

ℓ

24

© 2014 Steve Marschner •

Non-diffuse Gouraud shading

• Can apply Gouraud shading to any illumination model
– it’s just an interpolation method

• Results are not so good with fast-varying models like
specular ones
– problems with any 

highlights smaller 
than a triangle

– (demo)

[F
ol

ey
 e

t
al

.]

25

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_20w/pipeline_demo/

© 2014 Steve Marschner •

Per-pixel (Phong*) shading

• Get higher quality by interpolating the normal
– just as easy as interpolating the color
– but now we are evaluating the illumination model per pixel

rather than per vertex (and normalizing the normal first)
– in pipeline, this means we are moving illumination from the

vertex processing stage to the fragment processing stage

26

(*not the same thing as Blinn-Phong reflection)

© 2014 Steve Marschner •

Per-pixel (Phong) shading

• Bottom line: produces much better highlights

[F
ol

ey
 e

t
al

.]

27

© 2014 Steve Marschner •

Pipeline for per-pixel shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– transform position (eye to screen space)
– pass through color

• Rasterizer
– interpolated parameters: z’ (screen z); r, g, b color; x, y, z

normal

• Fragment stage (output: color, z’)
– compute shading using interpolated color and normal
– write to color planes only if interpolated z’ < current z’

28

© 2014 Steve Marschner •

Result of per-pixel shading pipeline

29(demo)

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

Summary: Shading and Interpolation Techniques

Vertex Shader Rasterizer Fragment Shader

Flat
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Write color if z buffer
says so

Gouraud
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Write color if z buffer
says so

Phong
p, n, l --> cam space

p --> screen space

pass through vtx_color

color = n * l * frag_color

Write color if z buffer
says so

In
te

rp
ol

at
io

n
Pipeline Stage

Summary: Shading and Interpolation Techniques

Lambertian Blinn-phong

Flat

Gouraud

Phong

in
te

rp
ol

at
io

n
reflection

Summary: Shading and Interpolation Techniques

Vertex Shader Rasterizer Fragment Shader

Flat
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Interpolate z'

Pass through color

Write color if z buffer
says so

Gouraud
p, n, l --> cam space

color = n * l * vtx_color

p --> screen space

Interpolate z'

Interpolate color

Write color if z buffer
says so

Phong
p, n, l --> cam space

p --> screen space

pass through vtx_color

Interpolate z'

Interpolate vtx_color

Interpolate normal

color = n * l * frag_color

Write color if z buffer
says so

In
te

rp
ol

at
io

n
Pipeline Stage

