

Computer Graphics

Lecture 20
Hierarchical Transformations
Scene Graphs

Announcements

Goals

 Know how to structure a collection of objects in a scene graph where transformations are applied hierarchically.

Transformation Hierarchies AKA Scene Graphs

- Represent a drawing ("scene") as a list of objects
- Transform for each object
 - can use minimal primitives: ellipse is transformed circle
 - transform applies to points of object

Example

- Can represent drawing with flat list
 - but editing operations require updating many transforms

Groups of objects

- Treat a set of objects as one
- Introduce new object type: group
 - contains list of references to member objects
- This makes the model into a tree
 - interior nodes = groups
 - leaf nodes = objects
 - edges = membership of object in group

Demo: Drawing in Keynote

Example

- Add group as a new object type
 - lets the data structure reflect the drawing structure
 - enables high-level editing by changing just one node

The Scene Graph (tree)

- A name given to various kinds of graph structures (nodes connected together) used to represent scenes
- Simplest form: tree
 - just saw this
 - every node has one parent
 - leaf nodes are identified
 with objects in the scene

Instances

- Simple idea: allow an object to be a member of more than one group at once
 - transform different in each case
 - leads to linked copies
 - single editing operation changes all instances

Questions?

Questions?

- That wraps up our discussion of transformations.
- We have an (almost) fully-featured wireframe rendering framework.
 - We haven't implemented clipping yet for geometry outside the view volume.
- Next up:
 - more realism: occlusion, shading
 - speed: using hardware