Computer Graphics

Lecture 19
Viewing Transformations - 2
Announcements

• "Midterm" exam is out one week from Friday

• Takehome; 20% of your grade, inspired by HW

• Upshot: if you got HW problems wrong, make sure you know how to get them right. You have nearly 2 weeks, so now's the time to start reviewing.

• HW1 out today or tomorrow; aiming for quick grading turnaround on HW2 and HW3
Viewing Transformations: Overview
A standard sequence of transforms to go from object (model) space to screen (image) space
A Wireframe Rendering Algorithm

Form matrices $M_{vp}, M_{proj}, M_{cam}, M_{model}$

$M \leftarrow M_{vp}M_{proj}M_{cam}M_{model}$

for each line segment a_i, b_i:

$$p \leftarrow Ma_i$$

$$q \leftarrow Mb_i$$

`draw_line(p, q)`
Viewing Transformations: Demo

- https://www.cs.cornell.edu/courses/cs4620/2020fa/demos_cs4620/view_explore/view_explore.html
Model Matrix

Input: Scene in model coordinates

Parameters: Pose, scale, etc of model in scene

Output: Scene in world coordinates
Camera Matrix

Input: Scene in world coordinates

Parameters: Camera frame \((u, v, w, e)\)

Output: Scene in camera coordinates
Projection Matrix - Orthographic

Input: Scene in (canonically-posed) camera coordinates

Parameters: Orthographic viewport dimensions

Output: Normalized device coordinates
Viewport Matrix

Input: Scene in the canonical view volume

Parameters: W, H (image dimensions in pixels)

Output: (x, y) in pixel coordinates; z unchanged
Let's build it
Viewport Matrix

Input: Scene in the canonical view volume
Parameters: W, H (image dimensions in pixels)
Output: \((x, y)\) in pixel coordinates; \(z\) unchanged
Projection Matrix - Orthographic

Input: Scene in *canonically-posed* camera coordinates

Parameters: Orthographic viewport dimensions

Output: Normalized device coordinates
Camera Matrix

Input: Scene in world coordinates

Parameters: Camera frame \((u, v, w, e)\)

Output: Scene in camera coordinates
Model Matrix

Input: Scene in model coordinates

Parameters: Pose, scale, etc of model in scene

Output: Scene in world coordinates
Bonus Problem

Build a **model transformation** that takes our canonical 2x2x2 cube, scales it to 40x40 and centers it at x=0, y=1, z=-4, rotated 30 degrees around the y axis.