
Lecture 8: Ray-Sphere Intersection  
 

Ray-Sphere Intersection  

I mentioned earlier that the easiest setting to do intersection of two objects is when one is parametric and one 
is implicit. Since our rays are in parametric form, it's going to be easier to intersect a ray with an implicit 
equation for the sphere, rather than using parametric equations (e.g., in terms of ). The book has the 
derivation for general spheres; to build intuition here, let's just look at a unit sphere centered at the origin.

Brainstorm: What is true of all points on this sphere?

A: All points are a distance 1 from the origin (generally: a distance  from the center)

The distance to the origin is simply the euclidean norm of the vector:

Things are cleaner if we square both sides: 

And if we wish to follow tradition and have = 0 on one side, we can write

We'd like to substitue our parametric ray equation into this, but our rays are written in vector notation. Let's 
convert the implicit sphere to vector notation. Let's start by rewriting the sphere as

Now if we let , the point on our sphere, then all points  on the sphere satisfy:

Now we can substitute. Points on our ray all have the form

so we'll substitute   for  and see for which value(s) of  the ray satisfies the sphere equation.

If we multiply this out (FOIL, except I'm going to write the terms in LOIF order), we get:

Remember that we know the ray, hence  and  are known, so the only unknown here is . This is simply an 



Remember that we know the ray, hence  and  are known, so the only unknown here is . This is simply an 
equation of the form 

with:

This is a quadratic! We know how to solve those using the quadratic formula:

Plugging in the values of  from above, we get this monster:

Recall that for a perspective camera, the direction vector  of our ray goes from the eye to the image plane. We 
didn't normalize that vector for good reasons that will become apparent later, but to simplify our intuition here, 

let's suppose we had. The length of  doesn't change the ray described, it just scales all the values of . So if  is 

unit length, then  and the above monster simplifies to

See the slides for a diagram interpreting this geometrically.

At a geometric level, this makes some intuitive sense because the implicit sphere equation plugged in with 
coordinates  of any point represents the point's signed squared distance from the sphere's surface. It's 
not quite the signed distance because we squared both sides way back in the beginning to get the square root 
to go away. However, this does not change the function's zeros: as the ray approaches the sphere, 

 is positive but shrinking quickly; then it hits the surface, goes negative but slower and slower 
as it goes towards the center of the chord, then heads back towards positive, crossing the other side of the 
sphere and heading off into space - exactly the behavior of a parabola.

It also makes sense that a ray can have either 0, 1, or 2 intersection points with a sphere - the same possibilities 
for the zeros of a quadratic.

Ray-Scene Intersection  



Ray-Scene Intersection  

When searching for intersections with objects, we've already talked about wanting to limit the possible values of 
: for perspective rays we want to search only values of  to avoid hitting objects that are behind the 

viewport. It's also handy for our intersection routines to be able to specify a maximum value of , so our 
function header might look like:

Interesting scenes are likely to have more than one object, and a distant sphere could be occluded by a closer 
one. So to determine for sure what a ray sees, we'll take a brute force approach: simply intersect the ray with all 
the objects in the scene, keeping track of the smallest .

 

Lights and Shading  

Okay so we hit a point on a sphere. We're always interested in the closer point, since that's the one we'd see 
first along the ray, so we can solve for both but take the smaller value of . What now?

We need to decide what color that point on the sphere appears. The simplest approach is to have a constant 
color for each object and simply use that color. However, in realistic images, the appearance of a surface 
depends on both properties of the surface itself as well as properties of the light hitting it.

 

ray_intersect(ray, sphere, tmin, tmax)

find_intersection(ray, scene):
  closest_t = Inf
  closest_surface = nothing
  for object in scene:
    surface, t = ray_intersect(ray, object, 1, closest_t)
    if surface != nothing:
      closest_t = t
      closest_surface = surface
   return closest_t, closest_surface
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