Computer Graphics

Lecture 6
Introduction to Ray-Tracing
Cameras and Ray Generation

Goals

* Understand the high-level distinction
between object-order rendering and image-
order rendering.

e Know the mathematical definition of a ray.

e Know how to generate viewing rays for a
canonical perspective camera.

Announcements:
Scott is sick edition

e Class probably remote tomorrow,
Wednesday; watch for announcements.

e

e Today's OH on (Zoom? |

Announcements

Announcements

e HW1 out, due in 1 week

Announcements

e HW1 out, due in 1 week

* A1l is out (later today), due Wednesday 10/12.

e A1 is (much) bigger than AO. Please get started early.

Announcements

e HW1 out, due in 1 week

* A1l is out (later today), due Wednesday 10/12.

e A1 is (much) bigger than AO. Please get started early.

* There is one video (13 minutes) to watch for tomorrow.

Announcements

e HW1 out, due in 1 week
e A1l is out (later today), due Wednesday 10/12.
« At is (much) bigger than AQ. Please get started early.
* There is one video (13 minutes) to watch for tomorrow.
* Discord communication norms:

e | will ignore DMs

* Please don't @mention me unless there's something time-sensitive
and widely applicable

Where were we?

Pseudocode for 3D graphics:

Triangle(a, b, c)
Sphere(c, 1)

Create a model of a scene meshgen.jl (A1)

Render an image of the model

Where were we?

Pseudocode for 3D graphics:

Create a model of a scene

Render an image of the model

For each pixel:
if inside triangle:
color pixel

Two Rendering Algorithms

Two Rendering Algorithms

for each object in the scene {
for each pixel in the image {
if (object affects pixel) {
do something

}
}
}

object order
or
rasterization

Two Rendering Algorithms

for each object in the scene { for each pixel in the image {

for each pixel in the image { for each object in the scene {
if (object affects pixel) { if (object affects pixel) {
do something do something
))
))
))
object order image order
or or

rasterization ray tracing

Two Rendering Algorithms

Q: Which of these did we do in AO?

Two Rendering Algorithms

for each object in the scene {
for each pixel in the image {
if (object affects pixel) {
do something

)

object order
or
rasterization

W

Q: Which of these did we do in AO?

Two Rendering Algorithms

for each object in the scene { for each pixel in the image {

for each pixel in the image { for each object in the scene {
if (object affects pixel) { if (object affects pixel) {
do something do something
))
}) B
))
object order image order
or or .
rasterization ray tracing

Q: Which of these did we do in AO?

Two Rendering Algorithms

Today: starting here.

Two Rendering Algorithms

Today: starting here.

Two Rendering Algorithms

for each pixel in the image {
for each object in the scene {
if (object affects pixel) {
do something

}
J
}

image order
or
ray tracing

Today: starting here.

How do we make images?

Color prol (enws ()] = color
b)“\éﬁ?i\g> M)v [I?\ACQ@F

@Wi(ﬂ; /W/cmlk/éaam‘

V"l@j/h ~ mages

Caweas!

How do we make images?

e |RL:

* pencils, paintbrushes, watercolors, etc
* eyes
e cameras
e On computers:
* MS paint

* manually writing pixel values into Julia arrays

ﬁ ¢ virtual cameras

/

|HEi

185 O

The Camera Conundrum;:

The Camera Conundrum;:

The world i1s 3D

The Camera Conundrum;:

The world i1s 3D

Images are 2D

The Camera Conundrum;:

The world i1s 3D

Images are 2D

we gotta lose a D
somehow

A ray iIs half a line.

We'll describe rays using:
* An origin (p) where the ray begins
* A direction (d) in which the ray goes

A ray iIs half a line.

We'll describe rays using:
* An origin (p) where the ray begins
* A direction (d) in which the ray goes

* This is a parametric equation: it generates points on the line

A ray iIs half a line.

We'll describe rays using:
* An origin (p) where the ray begins
* A direction (d) in which the ray goes

* This is a parametric equation: it generates points on the line
* The set of points with t > 0 gives all points on the ray

Projections:
ways to lose a D

Projections:
ways to lose a D

e The picture-frame method is ’//“
called perspective projection/
"4
d —

Projections:
ways to lose a D

e The picture-frame method is ’//“
called perspective projection/
"4
d —

Projections:
ways to lose a D

:; /7/!, X
e The picture-frame method is NQ

called perspective projection/ N
"4
d —

e Key property of perspective: <
all viewing rays originate at a v
single point, the center of
projection, or eye.

Projections:
ways to lose a D

I
N

° \
I
N

—
—0-—. __//VV
74
VV/L
e u

r"j

"
.

\

VQb

Projections:
ways to lose a D

I

* Another common one is 3
- - —

parallel projection S

[
o

Projections:
ways to lose a D

I

* Another common one is 3
- - —

parallel projection S

[
o

Projections:
ways to lose a D

I

e Another common one is S
- - —

parallel projection S

[
o

e Key property of parallel
projections:
all viewing rays are parallel

Ray Tracing: Pseudocode

for each pixel:

generate a viewing ray for the pixel

—> find the closest object it intersects

determine the color of the object

V-
>/°\< light source

viewer (eye)

visible point

objects
in scene

are determined by the position and orientation of the camera
e For perspective projection, viewing rays
originate at the eye.

* The direction varies depending on the pixel.

Let's start with a simple
camera

Eye is at the origin (0, 0O, 0) +Y -7
A VW
Looking down the negative z axis

Viewport is parallel to the xy plane

vh

>

vh =vw =1

¢/

e d=1 X

What is the 3D viewing ray for pixel (i, j)?

Whiteboard: (i,]) to (x, y)

he & g5 1ok
S%\Wof
X = ?—*_‘L T
() Z |

e~ ' ﬂ i

f@)(,q’n <w 1) \5
: L—'>><

; (O)C))
g;,@@,@ I
4
\/‘:’/\j

4

Viewing rays for the
canonical camera

|
Y 1
X =

Origin (p): (O, 0O, 0)
Direction (d): (x, y, -1)

Problems - in groups

. Generate an example viewing ray
Intersect the ray with a plane in the scene

. Generalize camera model by removing
assumptions:

* Eyeis not at the origin (0, 0, 0)
e vhil=vw!=1

e dl=1

What if | want to point the
camera somewhere else?

The camera's pose is defined
by a coordinate frame:

e u points right from the eye

e v points up from the eye

e w points back from the eye

Given this, we can generate a
viewing ray as follows:

1. Turn (i,j) into u, v instead of x, y (same math \\:
2. Viewingray in (X, y, z) world is: 5 \
origin = eye
direction=u*u+v*v+-d*w

