
Computer Graphics
Lecture 6

Introduction to Ray-Tracing
Cameras and Ray Generation

Goals
• Understand the high-level distinction

between object-order rendering and image-
order rendering.

• Know the mathematical definition of a ray.

• Know how to generate viewing rays for a
canonical perspective camera.

Announcements:
Scott is sick edition

• Class probably remote tomorrow,
Wednesday; watch for announcements.

• Today's OH on (Zoom? Discord?)

Announcements

Announcements
• HW1 out, due in 1 week

Announcements
• HW1 out, due in 1 week

• A1 is out (later today), due Wednesday 10/12.

• A1 is (much) bigger than A0. Please get started early.

Announcements
• HW1 out, due in 1 week

• A1 is out (later today), due Wednesday 10/12.

• A1 is (much) bigger than A0. Please get started early.

• There is one video (13 minutes) to watch for tomorrow.

Announcements
• HW1 out, due in 1 week

• A1 is out (later today), due Wednesday 10/12.

• A1 is (much) bigger than A0. Please get started early.

• There is one video (13 minutes) to watch for tomorrow.

• Discord communication norms:

• I will ignore DMs

• Please don't @mention me unless there's something time-sensitive
and widely applicable

Where were we?
Pseudocode for 3D graphics:

Create a model of a scene
Render an image of the model

Triangle(a, b, c)
Sphere(c, r)

meshgen.jl (A1)

Where were we?
Pseudocode for 3D graphics:

For each pixel:
 if inside triangle:
 color pixel

Create a model of a scene
Render an image of the model

Two Rendering Algorithms

Two Rendering Algorithms
for each object in the scene {

for each pixel in the image {
if (object affects pixel) {

do something
}

}
}

object order
or

rasterization

Two Rendering Algorithms
for each object in the scene {

for each pixel in the image {
if (object affects pixel) {

do something
}

}
}

object order
or

rasterization

image order
or

ray tracing

for each pixel in the image {
for each object in the scene {

if (object affects pixel) {
do something

}
}

}

Two Rendering Algorithms

Q: Which of these did we do in A0?

Two Rendering Algorithms
for each object in the scene {

for each pixel in the image {
if (object affects pixel) {

do something
}

}
}

object order
or

rasterization
Q: Which of these did we do in A0?

Two Rendering Algorithms
for each object in the scene {

for each pixel in the image {
if (object affects pixel) {

do something
}

}
}

object order
or

rasterization

image order
or

ray tracing

for each pixel in the image {
for each object in the scene {

if (object affects pixel) {
do something

}
}

}

Q: Which of these did we do in A0?

Two Rendering Algorithms

Today: starting here.

Two Rendering Algorithms
for each object in the scene {

for each pixel in the image {
if (object affects pixel) {

do something
}

}
}

object order
or

rasterization
Today: starting here.

Two Rendering Algorithms
for each object in the scene {

for each pixel in the image {
if (object affects pixel) {

do something
}

}
}

object order
or

rasterization

image order
or

ray tracing

for each pixel in the image {
for each object in the scene {

if (object affects pixel) {
do something

}
}

}

Today: starting here.

How do we make images?

How do we make images?
• IRL:

• pencils, paintbrushes, watercolors, etc

• eyes

• cameras

• On computers:

• MS paint

• manually writing pixel values into Julia arrays

• virtual cameras

The Camera Conundrum:

The world is 3D

The Camera Conundrum:

The world is 3D

Images are 2D

The Camera Conundrum:

The world is 3D

Images are 2D
we gotta lose a D

somehow

The Camera Conundrum:

A ray is half a line.
We'll describe rays using:

• An origin (p) where the ray begins

• A direction (d) in which the ray goes

A ray is half a line.
We'll describe rays using:

• An origin (p) where the ray begins

• A direction (d) in which the ray goes

• This is a parametric equation: it generates points on the line

A ray is half a line.
We'll describe rays using:

• An origin (p) where the ray begins

• A direction (d) in which the ray goes

• This is a parametric equation: it generates points on the line
• The set of points with t > 0 gives all points on the ray

Projections:
ways to lose a D

u
e

v

w

Projections:
ways to lose a D

• The picture-frame method is
called perspective projection

u
e

v

w

Projections:
ways to lose a D

• The picture-frame method is
called perspective projection

u
e

v

w

Projections:
ways to lose a D

• The picture-frame method is
called perspective projection

• Key property of perspective:  
all viewing rays originate at a
single point, the center of
projection, or eye.

u
e

v

w

Projections:
ways to lose a D

ue
w

v

• Another common one is 
parallel projection

Projections:
ways to lose a D

ue
w

v

• Another common one is 
parallel projection

Projections:
ways to lose a D

ue
w

v

• Another common one is 
parallel projection

• Key property of parallel
projections:  
all viewing rays are parallel

Projections:
ways to lose a D

ue
w

v

Ray Tracing: Pseudocode
for each pixel:
 generate a viewing ray for the pixel
 find the closest object it intersects
 determine the color of the object

Viewing Rays
• For perspective projection, viewing rays

originate at the eye.

• The direction varies depending on the pixel.

u
e

v

w

are determined by the position and orientation of the camera

Let's start with a simple
camera

• Eye is at the origin (0, 0, 0)

• Looking down the negative z axis

• Viewport is parallel to the xy plane

• vh = vw = 1

• d = 1

-

+

+

What is the 3D viewing ray for pixel (i, j)?

Whiteboard: to (i, j) (x, y)

-

+

+

Viewing rays for the
canonical camera

-

+

+x =
j − 1

2
W

− 1
2

y = −
i − 1

2
H

− 1
2

 Origin (p): (0, 0, 0)

Direction (d): (x, y, -1)

1

1
1

Problems - in groups
1. Generate an example viewing ray

2. Intersect the ray with a plane in the scene

3. Generalize camera model by removing
assumptions:

• Eye is not at the origin (0, 0, 0)

• vh != vw != 1

• d != 1

What if I want to point the
camera somewhere else?

u
e

vw

The camera's pose is defined
by a coordinate frame:
• u points right from the eye

• v points up from the eye

• w points back from the eye

Given this, we can generate a
viewing ray as follows:

1. Turn (i,j) into u, v instead of x, y (same math1)

2. Viewing ray in (x, y, z) world is: 

 origin = eye 
 direction = u * u + v * v + -d * w

