or: I ordered an image and all I got was this grid of colored boxes
Announcements

• Assignments out:
 • HW0 due next Friday
 • A0 due Monday, 10/3

• Please bring your name card to every class (or leave them with me and I’ll bring them).

• Please fill out the About You survey if you haven't yet]
Logistics / Syllabus:
Key Points

• Lectures occasionally flipped
• Book
• Slip days
• Math
• Julia, Javascript
• Feedback
• Q&A - Discord?
Syllabus/Logistics: Questions?
ABCD Cards

Some finer points on ABCD card use:

- Don’t show your answer until I say so
- Hold your card close
- Blank or unfolded: a valid (and underrated) way to say “I have no idea”
1. You have 3 slip days that can applied to extend any deadline.

2. You **don't** need to email me to use a slip day.

3. The midterm is given in week 5 of the course.

4. Lecture slides, videos, etc. are posted on Canvas.
Goals (meta)

• A slide like this will (should) appear at the beginning of each lecture.

• This is my way of conveying what I expect you to be able to understand or do after the class.

• In aggregate, these goals form a study guide.
Goals

• Understand how images are represented mathematically (as a function) and computationally (as a 2D array sampled from a function)

• Know how to manipulate the pixel values of an image in Julia

• Know how color is represented using RGB values
How do we graphics?

Let's design a simple graphics system.

The goal: draw a triangle on the screen.
How do we graphics?

Let's design a simple graphics system.

The goal: draw a triangle on the screen.

(why a triangle? more on this next time...)
How do we graphics?

Let's design a simple graphics system.

The goal: draw a triangle on the screen.

Pseudocode for graphics:

• Create a model of a scene
 “Represent” the triangle

• Render an image of the scene
 Turn on pixels inside the triangle

(why a triangle? more on this next time...)
Create a model of the scene

Convention: list vertices in **counterclockwise** order.
How many ways can I write down this triangle?

A. 1
B. 2
C. 3
D. 6

Convention: list vertices in **counterclockwise** order.
Render an image of the model

what is that?
What is an image anyway?

- A photographic print?
- A photographic negative?
- The screen you're watching this on?
- Some numbers in RAM?
What is an image?

At its most formal and general: a function that maps positions in 2D to distributions of radiant energy

\[I : \mathbb{R}^2 \Rightarrow ?? \]
What about color?

- Humans are trichromatic, so we usually represent color as combinations or red, green, and blue.

[Image: RGB_illumination.jpg]

[Image: Wall_Wallpaper_004.jpg]
How do we represent images?

• Raster formats - a 2D array of numbers

• Vector formats - mathematical description
How do we display images?

Old School Edition

Color Projector

- red
- yellow
- cyan
- white
- magenta
- blue

Cathode Ray Tube

- Electron Guns
- Selection of Shadow Mask
- Magnified Phosphor-Dot Triangle
- Screen
How do we display images?

Nowadays Edition

Liquid Crystal Display

Digital Light Processing

Light Emitting Diode Display
How do we display images? Nowadays Edition

Liquid Crystal Display

Digital Light Processing

these are all examples of raster displays
Aside: It doesn't have to be this way...

XY Plotter

images: https://github.com/fogleman/In
Raster Images

- Flexible
- Display-native
- Expensive
- Not ideal
- But darn useful
A model of the scene
Representing Raster Images: 2D Arrays of Numbers

- Bitmap (1 bit per pixel)
- Grayscale (usually 8 bpp)
- Color (usually 24 bpp)
- Floating-point (gray or color)

- Bad for display, but good for processing
- Allows high dynamic range
- For LDR, values range from 0-1 by convention
Raster Images: Storage

1 megapixel image - 1024x1024:

- Bitmap (1 bit per pixel) - 128 KB
- Grayscale (8 bpp) - 1 MB
- Color (24 bpp) - 3 MB
- Floating-point (color) - 12 MB
Aside: Performance

Fact: A 1 megapixel image has $1024 \times 1024 = 1048576 = 2^{20}$ pixels.

Consequence: creating a 1 megapixel image requires making 2^{20} decisions.

Implication: performance matters.
2D Arrays in Julia

For a color float image, each pixel is 3 single-precision floats:

```julia
canvas = zeros(RGB{Float32}, height, width)
```

- Make an array of zeros...
- ...of type RGB{Float32}...
- ...with dimensions (height x width)
2D Arrays in Julia

canvas = zeros(RGB{Float32}, height, width)

Matrix-style **1-based** indexing (row, column):

canvas[i, j] # is the i'th row, j'th column
2D Arrays in Julia

canvas = zeros(RGB{Float32}, height, width)

Matrix-style **1-based** indexing (row, column):

canvas[i, j] # is the i'th row, j'th column

canvas[3, 6]
Raster Images: Coordinate Systems

Model coordinates
Image coordinates

We'll be working a lot with coordinate transformations!