Computer Graphics

Lecture 25

Rasterizing Lines

Announcements

e Midterm due tonight.
Typo (#4 up vector) was fixed Saturday night.

e Final project feedback has been emailed. Next steps:
* Accept final project assignment on GH classroom and create a repo

e Make a reports/ directory and commit your proposal and my feedback
(as a txt file is fine). Prepend filenames with dates so they sort
chronologically.

* Today (midnight) is the last day to request P/NP
grading.

Graphics Pipeline: Overview

you are here

3D transformations; shading

conversion of primitives to fragments

blending, compositing, shading

user sees this

Recall: Wireframe Rendering

M = Myp Mproj Mview Mmodel

for each line segment ai, bi:
p=Maj;

q =M b;

draw line(p, 4q) | How do we do this?

Line Drawing

e This is a rasterization problem: given a

primitive (line segment), generate fragments
(pixels)

M = Mvp Mproj Mview Mmodel

for each line segment ai, bi

p =M a;

q = M b;

draw line(p, 4) | How do we do this?

Problem statement: Draw a line from p to q.
or: Decide which pixels to color to draw a line from p to
°q

Rasterizing lines - possible definition

* Define line as a
rectangle

* Specify by two
endpoints

* ldeal image: black
inside, white outside

© 2014 Steve Marschner * 7

Point sampling

* Approximate
rectangle by drawing
all pixels whose
centers fall within the
line

* Problem: sometimes
turns on adjacent
pixels

© 2014 Steve Marschner * 8

Point sampling
in action

© 2014 Steve Marschner ¢ 9

Bresenham lines (midpoint alg.)

* Point sampling unit
width rectangle leads
to uneven line width

* Define line width
parallel to pixel grid

 That is, turn on the
single nearest pixel in
each column

* Note that 45° lines
are now thinner

© 2014 Steve Marschner * 10

Midpoint algorithm
in action

© 2014 Steve Marschner * |1

Point sampling
in action

© 2014 Steve Marschner * 12

Notes:
Midpoint Algorithm

Midpoint Algorithm

* line equation:
y=b+mx

* Simple algorithm:
evaluate line equation
per column

* W.lo.g xo < xi;
Osm<|

S - N W A U 0 N 00O v

¢ + 2 3 4 % 6 T 8 9 P H R

Algorithm:

y=191+037x

© 2014 Steve Marschner * 14

Midpoint Algorithm

* line equation:
y=b+mx

* Simple algorithm:
evaluate line equation
per column

* W.lo.g xo < xi;
Osm<|

S - N W A U 0 N 00O v

¢ + 2 3 4 % 6 T 8 9 P H R

Algorithm:

// compute m, b

y=191+037x

for x = ceil(x0) to floor(x1)
y=b+m*x
// Bx: what goes here?
© 2014 Steve Marschner 15

Algorithms for drawing lines

* line equation:
y=b+mx

* Simple algorithm:
evaluate line equation
per column

* W.lo.g xo < xi;
Osm<|

S - N W A U 0 N 00O v

¢ + 2 3 4 % 6 T 8 9 P H R

Algorithm:

// compute m, b

y=191+037x

for x = ceil(x0) to floor(x1)
y=b+m*x
draw(x, round(y))

© 2014 Steve Marschner * 16

Optimizing Line Drawing

Can we take stuff out of
the inner loop!?

EXxercise: optimize this function fast_line(pl, pR):
// compute m, b

function slow_line(pl, pR):
// compute m, b
for x = ceil(x0) to floor(x1l)
y=b+m*x _
draw(x, round(y)) for x = ceil(x0) to floor(x1)

draw(x, round(y))

© 2014 Steve Marschner * 17

Optimizing Line Drawing Even More

“Ty)

— d > 0.5 decides
between E and NE

* Rounding is slow too ’
8
* At each pixel the only
options are Eand NE ¢
* Track distance to line: i NE
—d=m(x+1)+b-y ; SF
2
I
0

¢ + 2 3 4 % 6 T 8 9 P H R

© 2014 Steve Marschner * 18

Optimizing Line Drawing Even More

e d=m(x+1)+b-y
* Only need to update

d for integer steps in
xandy

e Do that with addition

* Known as “DDA”
(digital differential
analyzer)

9
8
¢
6
5
4
3
2
I
0

_jd——l

¢ + 2 3 4 % 6 T 8 9 P H R

© 2014 Steve Marschner * 19

Linear interpolation

* We often attach attributes to vertices

— e.g. computed diffuse color of a hair being drawn using lines
— want color to vary smoothly along a chain of line segments

* Same machinery as

we used for y works ;:-
\'/
for other values!

© 2014 Steve Marschner * 20

Rasterizing triangles

* Input:
— three 2D points (the triangle’s vertices in pixel space)
* (o0, yo); (x1,y1); (x2, y2)
— parameter values at each vertex
®* o0y --.5qOn;s 10y - --5 GlIny; 205 -5 Q2n
* Output: a list of fragments, each with
— the integer pixel coordinates (x, y)
— interpolated parameter values qo, ..., gn

© 2014 Steve Marschner * 21

Rasterizing triangles

. Summary @ & | L J | a L] Qq;,ofz.). .Q, qz:)j @ @ L J a 2]
. . | ? | aver@texo ' ° ‘ © ® | S <‘ 2 e | ® © ®
| evaluation of linear nrir N T o e
fupctlons on pixel | |fraprhden gy) [
grid BREE T
2 functions definedby ~ ~ ~ i
parameter values i aalladt S
at vertices xpy)
: | ~ (@10: -+ q1n)
3 using extra o | oo o]
parameters |*]=] o|ofofe]e
to determine ER oo]
fragment set il i il Bl Al Il

© 2014 Steve Marschner 22

Incremental linear evaluation

* A linear (affine, really) function on the plane is:
4(z,y) = c2T + cyy + ck

* Linear functions are efficient to evaluate on a grid:
gz +1y) =cez+1) +eyy +cr=q,9) +
g2,y +1) = car +cy(y +1) + e = q(z,9) + ¢y

+cx+cx+cx+cx+cx

© 2014 Steve Marschner * 23

Pixel-walk (Pineda) rasterization

Conservatively visit a
superset of the pixels
you want

Interpolate linear
functions

— barycentric coords
(determines when to
emit a fragment)

— colors
— normals
— whatever else!

© 2014 Steve Marschner * 24

