
Computer Graphics
Lecture 23

Rasterizing Lines

Announcements
• Midterm due tonight.  

Typo (#4 up vector) was fixed Saturday night.

• Final project feedback has been emailed. Next steps:

• Accept final project assignment on GH classroom and create a repo

• Make a reports/ directory and commit your proposal and my feedback
(as a txt file is fine). Prepend filenames with dates so they sort
chronologically.

• Today (midnight) is the last day to request P/NP
grading.

Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to fragments

blending, compositing, shading

user sees this

Recall: Wireframe Rendering

M = Mvp Mproj Mview Mmodel
for each line segment ai, bi
 p = M ai
 q = M bi
 draw_line(p, q) How do we do this?

Line Drawing
• This is a rasterization problem: given a

primitive (line segment), generate fragments
(pixels)

M = Mvp Mproj Mview Mmodel
for each line segment ai, bi
 p = M ai
 q = M bi
 draw_line(p, q) How do we do this?

p

q

Problem statement: Draw a line from p to q.
or: Decide which pixels to color to draw a line from p to q.

© 2014 Steve Marschner •

Rasterizing lines - possible definition

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image: black
inside, white outside

7

© 2014 Steve Marschner •

Point sampling

• Approximate
rectangle by drawing
all pixels whose
centers fall within the
line

• Problem: sometimes
turns on adjacent
pixels

8

© 2014 Steve Marschner •

Point sampling
in action

9

© 2014 Steve Marschner •

Bresenham lines (midpoint alg.)

• Point sampling unit
width rectangle leads
to uneven line width

• Define line width
parallel to pixel grid

• That is, turn on the
single nearest pixel in
each column

• Note that 45º lines
are now thinner

10

© 2014 Steve Marschner •

Midpoint algorithm
in action

11

© 2014 Steve Marschner •

Point sampling
in action

12

Notes:
Midpoint Algorithm

© 2014 Steve Marschner •

Midpoint Algorithm

• line equation:
y = b + m x

• Simple algorithm:
evaluate line equation
per column

• W.l.o.g. x0 < x1;
0 ≤ m ≤ 1

y = 1.91 + 0.37 x

14

Algorithm:

© 2014 Steve Marschner •

Midpoint Algorithm

• line equation:
y = b + m x

• Simple algorithm:
evaluate line equation
per column

• W.l.o.g. x0 < x1;
0 ≤ m ≤ 1

// compute m, b
for x = ceil(x0) to floor(x1)
 y = b + m*x
 // Ex: what goes here?

y = 1.91 + 0.37 x

15

Algorithm:

© 2014 Steve Marschner •

Algorithms for drawing lines

• line equation:
y = b + m x

• Simple algorithm:
evaluate line equation
per column

• W.l.o.g. x0 < x1;
0 ≤ m ≤ 1

// compute m, b
for x = ceil(x0) to floor(x1)
 y = b + m*x
 draw(x, round(y))

y = 1.91 + 0.37 x

16

Algorithm:

© 2014 Steve Marschner •

Optimizing Line Drawing
Can we take stuff out of
the inner loop?
Exercise: optimize this

17

function fast_line(p1, p2):
// compute m, b

for x = ceil(x0) to floor(x1)

 draw(x, round(y))

function slow_line(p1, p2):
// compute m, b
for x = ceil(x0) to floor(x1)
 y = b + m*x
 draw(x, round(y))

© 2014 Steve Marschner •

Optimizing Line Drawing Even More

• Rounding is slow too
• At each pixel the only

options are E and NE
• Track distance to line:

– d = m(x + 1) + b – y
– d > 0.5 decides

between E and NE

18

© 2014 Steve Marschner •

• d = m(x + 1) + b – y
• Only need to update

d for integer steps in
x and y

• Do that with addition
• Known as “DDA”

(digital differential
analyzer)

Optimizing Line Drawing Even More

19

© 2014 Steve Marschner •

Linear interpolation

• We often attach attributes to vertices
– e.g. computed diffuse color of a hair being drawn using lines
– want color to vary smoothly along a chain of line segments

20

• Same machinery as
we used for y works
for other values!

© 2014 Steve Marschner •

Rasterizing triangles

• Input:
– three 2D points (the triangle’s vertices in pixel space)

• (x0, y0); (x1, y1); (x2, y2)
– parameter values at each vertex

• q00, …, q0n; q10, …, q1n; q20, …, q2n

• Output: a list of fragments, each with
– the integer pixel coordinates (x, y)
– interpolated parameter values q0, …, qn

21

© 2014 Steve Marschner •

Rasterizing triangles

• Summary
1 evaluation of linear

functions on pixel
grid

2 functions defined by
parameter values
at vertices

3 using extra
parameters
to determine
fragment set

22

© 2014 Steve Marschner •

Incremental linear evaluation

• A linear (affine, really) function on the plane is:

• Linear functions are efficient to evaluate on a grid:

23

© 2014 Steve Marschner •

Pixel-walk (Pineda) rasterization

• Conservatively visit a
superset of the pixels
you want

• Interpolate linear
functions
– barycentric coords

(determines when to
emit a fragment)

– colors
– normals
– whatever else!

24

