
Computer Graphics
Lecture 24:

Shading in the Graphics Pipeline
Clipping

Announcements
• GL lab solution github repo posted on the course

webapge - one commit per task

• Midterm exam released after class.

• Upload 3 files to Canvas by Monday 10pm:

• obj: solution to problem 1

• .txt: solution template for remaining problems

• .pdf showing your work for problems 2-6

• Project proposal feedback by Tuesday.

Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Rendering Realistic Images

• We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

• We know how to get data in and out

• How do we realistic-looking images using
shading models like Lambertian and Blinn-
Phong?

Rendering Realistic Images

• We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

• We know how to get data in and out

• How do we realistic-looking images using
shading models like Lambertian and Blinn-
Phong?

but first, a rant about terminology

Phong shading Lambertian
shading in the fragment shader
• Shade (v.): determine color of a pixel

• Shader (n.): a program that runs on GPU

• Shading model (reflection or illumination model): 
light interaction model that determines a pixel's color

• Shading algorithm (interpolation technique): 
when, and in which shader, is the reflection model
computed, and using what normals?

vertex shader, fragment shader

Lambertian reflection, Blinn-Phong reflection

flat shading, Gouraud shading, Phong shading

basically all of computer graphics...

© 2014 Steve Marschner •

Flat shading (interpolation)

• Shade using the real normal of the triangle
– same result as ray tracing a bunch of triangles without

normal interpolation

• Leads to constant shading and faceted appearance
– truest view of the

mesh geometry

[F
ol

ey
 e

t
al

.]

7

© 2014 Steve Marschner •

Pipeline for flat shading

• Vertex stage (input: position / vtx; color and normal / tri)
– transform position and normal (object to eye space)
– compute shaded color per triangle using normal
– transform position (eye to screen space)

• Rasterizer
– interpolated parameters: z’ (screen z)
– pass through color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

8

© 2014 Steve Marschner •

Result of flat-shading pipeline

9

© 2014 Steve Marschner •

[G
ou

ra
ud

 t
he

si
s]

Gouraud shading

[F
ol

ey
 e

t
al

.]

• Often we’re trying to draw
smooth surfaces, so facets
are an artifact
– compute colors at

vertices using
vertex normals

– interpolate colors
across triangles

– “Gouraud shading”
– “Smooth shading”

10

© 2014 Steve Marschner •

Pipeline for Gouraud shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– compute shaded color per vertex
– transform position (eye to screen space)

• Rasterizer
– interpolated parameters: z’ (screen z); r, g, b color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

11

© 2014 Steve Marschner •

Result of Gouraud shading pipeline

12
Demo

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

© 2014 Steve Marschner •

Some possible efficiency hacks:

• Blinn-Phong model requires
knowing
– normal
– light direction
– view direction

• Hack: use directional lights so l
doesn't change

• Hack: pretend viewer is
infinitely distant so view
direction doesn't change either.

13

© 2014 Steve Marschner •

Non-diffuse Gouraud shading

• Can apply Gouraud shading to any illumination model
– it’s just an interpolation method

• Results are not so good with fast-varying models like
specular ones
– problems with any

highlights smaller
than a triangle

– (demo)

[F
ol

ey
 e

t
al

.]

14

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_20w/pipeline_demo/

© 2014 Steve Marschner •

Per-pixel (Phong*) shading

• Get higher quality by interpolating the normal
– just as easy as interpolating the color
– but now we are evaluating the illumination model per pixel

rather than per vertex (and normalizing the normal first)
– in pipeline, this means we are moving illumination from the

vertex processing stage to the fragment processing stage

15

(*not the same thing as Blinn-Phong reflection)

© 2014 Steve Marschner •

Per-pixel (Phong) shading

• Bottom line: produces much better highlights

[F
ol

ey
 e

t
al

.]

16

© 2014 Steve Marschner •

Pipeline for per-pixel shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– transform position (eye to screen space)
– pass through color

• Rasterizer
– interpolated parameters: z’ (screen z); r, g, b color; x, y, z

normal

• Fragment stage (output: color, z’)
– compute shading using interpolated color and normal
– write to color planes only if interpolated z’ < current z’

17

© 2014 Steve Marschner •

Result of per-pixel shading pipeline

18(demo)

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

Summary: Shading and Interpolation Techniques

Lambertian Blinn-phong

Flat

Gouraud

Phong

int
er

po
lat

io
n

reflection

Questions?

Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

in GL: magic; done for you

vertex shader

fragment shader

Rasterization: Overview
• 7(!?) weeks ago: rasterizing triangles

• Today: clipping

• Next week: rasterizing lines

© 2014 Steve Marschner •

Clipping

• Rasterizer tends to assume triangles are on screen
– particularly problematic to have triangles crossing

the plane z = 0
• After projection

– clip against the planes x, y, z = 1, –1 (6 planes)
– primitive operation: clip triangle against axis-aligned plane

23

© 2014 Steve Marschner •

Clipping a triangle against a plane

• 4 cases, based on sidedness of vertices
– all in (keep)
– all out (discard)
– one in, two out (one clipped triangle)
– two in, one out (two clipped triangles)

24

© 2014 Steve Marschner •

Exercise: Write pseudocode to do this.

• 4 cases, based on sidedness of vertices
– all in (keep)
– all out (discard)
– one in, two out (one clipped triangle)
– two in, one out (two clipped triangles)

25

© 2014 Steve Marschner • 26

