
Computer Graphics
Lecture/Lab 23

WebGL, continued
Flat, Gouraud, and Phong "shading"

Announcements
• Final project groups due tonight.

• Still looking for a group? Let's meet up after class.

• HW3 graded

• If you submit late (today or after), let me know so we
can go back and grade it.

• Final project report due Friday

A2 Artifact Results
A 4-way tie for first place!

3rd Place (tie): Sam Burgess07 - Lucas Binder

3rd Place (tie): Sam Burgess12 - Jonathan Derr

3rd Place (tie): Sam Burgess03 - Carter Schmidt

19 - Raiden Van Bronkhorst

Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.

• Tell GL how to interpret them (triangles, ...)

• GL executes custom-written vertex shader program on each
vertex (to determine is location in clip space)

• GL rasterizes primitives into pixel-shaped fragments 

• Execute custom-written fragment shader program on each
fragment to determine its color.

• GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

= normalized device  
coordinates

OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.

• Tell GL how to interpret them (triangles, ...)

• GL executes custom-written vertex shader program on each
vertex (to determine is location in clip space)

• GL rasterizes primitives into pixel-shaped fragments 

• Execute custom-written fragment shader program on each
fragment to determine its color.

• GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

= normalized device  
coordinates

(send geometry)

OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.

• Tell GL how to interpret them (triangles, ...)

• GL executes custom-written vertex shader program on each
vertex (to determine is location in clip space)

• GL rasterizes primitives into pixel-shaped fragments 

• Execute custom-written fragment shader program on each
fragment to determine its color.

• GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

= normalized device  
coordinates

(send geometry)

(write vertex shader)

OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.

• Tell GL how to interpret them (triangles, ...)

• GL executes custom-written vertex shader program on each
vertex (to determine is location in clip space)

• GL rasterizes primitives into pixel-shaped fragments 

• Execute custom-written fragment shader program on each
fragment to determine its color.

• GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

= normalized device  
coordinates

(send geometry)

(write vertex shader)

(write fragment shader)

Last time: Hello, Triangle!
• Send geometry

• Write a vertex shader

• Write a fragment shader

 by calling gl functions

in GLSL, the GL
shader language

Last time: Hello, Triangle!
• Send geometry

• Write a vertex shader

• Write a fragment shader

 by calling gl functions

in GLSL, the GL
shader language

Shader Responsibilities
The vertex shader's job is to:

• assign a value to gl_Position,  

which specifies the vertex's position

• assign values to any varying parameters needed later

The fragment shader's job is to:

• assign a value to gl_FragColor,  

which specifies the fragment's color
*

Shader Responsibilities
The vertex shader's job is to:

• assign a value to gl_Position,  

which specifies the vertex's position

• assign values to any varying parameters needed later

The fragment shader's job is to:

• assign a value to gl_FragColor,  

which specifies the fragment's color

Lab code so far:

gl_Position = vec4(Position, 1.0)

*

Shader Responsibilities
The vertex shader's job is to:

• assign a value to gl_Position,  

which specifies the vertex's position

• assign values to any varying parameters needed later

The fragment shader's job is to:

• assign a value to gl_FragColor,  

which specifies the fragment's color

Lab code so far:

gl_Position = vec4(Position, 1.0)

Lab code so far:

gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0)

*

WebGL Data Plumbing: Overview

framebuffer

uniform
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application

See also: Tuesday
lecture notes

WebGL Data Plumbing

framebuffer

uniform
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application

See also: Tuesday
lecture notes

WebGL Data Plumbing

framebuffer

uniform
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application
sent in vertex buffers

See also: Tuesday
lecture notes

WebGL Data Plumbing

framebuffer

uniform
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application
sent in an index buffer sent in vertex buffers

See also: Tuesday
lecture notes

WebGL Data Plumbing

framebuffer

uniform
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application

See also: Tuesday
lecture notes

GLSL - GL Shader Language

• Built-in types for small vectors/matrices
(e.g., vec3, mat4). They have friendly
constructors:  
 

• Multiplication does matrix multiplication:
// GL matrices are in column-major order
mat2 A = mat2(1.0, 2.0, 3.0, 4.0);
vec2 x = vec2(1.0, 0.0);

vec2 a = A * x; // a = (1,2)

vec3 a = vec3(1.0, 1.0, 1.0)
vec4 b = vec4(a, 1.0)

Task 2: Add a uniform
• Add a uniform variable called Matrix

containing a 4x4 matrix

• In the vertex shader, multiply the Position
attribute of the vertex by the Matrix to
move the triangle vertices.

Terminology: data plumbing

framebuffer

uniform
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application

See also: Tuesday
lecture notes

GLSL - GL Shader Language

• varyings are declared in both the Vertex
shader and in the Fragment shader.

• The vertex shader sets their values for each vertex,
then the rasterizer interpolates their values for each
fragment and passes to the fragment shader.

• By convention, varying names are usually
chosen to begin with v, such as vColor or
vNormal

Task 3: Add a varying
• Set up a varying parameter to set the

color at each vertex

• Use the interpolated values in the fragment
shader to set each fragment's color.

Rendering Realistic Images

Rendering Realistic Images

• We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

Rendering Realistic Images

• We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

• We know how to get data in and out

Rendering Realistic Images

• We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

• We know how to get data in and out

• How do we realistic-looking images using
shading models like Lambertian and Blinn-
Phong?

Rendering Realistic Images

• We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

• We know how to get data in and out

• How do we realistic-looking images using
shading models like Lambertian and Blinn-
Phong?

but first, a rant about terminology

Phong shading Lambertian
shading in the fragment shader

Phong shading Lambertian
shading in the fragment shader
• Shade (v.): determine color of a pixel

Phong shading Lambertian
shading in the fragment shader
• Shade (v.): determine color of a pixel

basically all of computer graphics...

Phong shading Lambertian
shading in the fragment shader
• Shade (v.): determine color of a pixel

• Shader (n.): a program that runs on GPU
basically all of computer graphics...

Phong shading Lambertian
shading in the fragment shader
• Shade (v.): determine color of a pixel

• Shader (n.): a program that runs on GPU
vertex shader, fragment shader

basically all of computer graphics...

Phong shading Lambertian
shading in the fragment shader
• Shade (v.): determine color of a pixel

• Shader (n.): a program that runs on GPU

• Shading model (reflection or illumination model): 
light interaction model that determines a pixel's color

vertex shader, fragment shader

basically all of computer graphics...

Phong shading Lambertian
shading in the fragment shader
• Shade (v.): determine color of a pixel

• Shader (n.): a program that runs on GPU

• Shading model (reflection or illumination model): 
light interaction model that determines a pixel's color

vertex shader, fragment shader

Lambertian reflection, Blinn-Phong reflection

basically all of computer graphics...

Phong shading Lambertian
shading in the fragment shader
• Shade (v.): determine color of a pixel

• Shader (n.): a program that runs on GPU

• Shading model (reflection or illumination model): 
light interaction model that determines a pixel's color

• Shading algorithm (interpolation technique): 
when, and in which shader, is the reflection model
computed, and using what normals?

vertex shader, fragment shader

Lambertian reflection, Blinn-Phong reflection

basically all of computer graphics...

Phong shading Lambertian
shading in the fragment shader
• Shade (v.): determine color of a pixel

• Shader (n.): a program that runs on GPU

• Shading model (reflection or illumination model): 
light interaction model that determines a pixel's color

• Shading algorithm (interpolation technique): 
when, and in which shader, is the reflection model
computed, and using what normals?

vertex shader, fragment shader

Lambertian reflection, Blinn-Phong reflection

flat shading, Gouraud shading, Phong shading

basically all of computer graphics...

© 2014 Steve Marschner •

Flat shading (interpolation)

• Shade using the real normal of the triangle
– same result as ray tracing a bunch of triangles without

normal interpolation

• Leads to constant shading and faceted appearance
– truest view of the

mesh geometry

[F
ol

ey
 e

t
al

.]

22

© 2014 Steve Marschner •

Pipeline for flat shading

• Vertex stage (input: position / vtx; color and normal / tri)
– transform position and normal (object to eye space)
– compute shaded color per triangle using normal
– transform position (eye to screen space)

• Rasterizer
– interpolated parameters: z’ (screen z)
– pass through color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

23

© 2014 Steve Marschner •

Result of flat-shading pipeline

24

© 2014 Steve Marschner •

[G
ou

ra
ud

 t
he

si
s]

Gouraud shading

• Often we’re trying to draw
smooth surfaces, so facets
are an artifact
– compute colors at

vertices using
vertex normals

– interpolate colors
across triangles

– “Gouraud shading”
– “Smooth shading”

25

© 2014 Steve Marschner •

[G
ou

ra
ud

 t
he

si
s]

Gouraud shading

[F
ol

ey
 e

t
al

.]

• Often we’re trying to draw
smooth surfaces, so facets
are an artifact
– compute colors at

vertices using
vertex normals

– interpolate colors
across triangles

– “Gouraud shading”
– “Smooth shading”

25

© 2014 Steve Marschner •

Pipeline for Gouraud shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– compute shaded color per vertex
– transform position (eye to screen space)

• Rasterizer
– interpolated parameters: z’ (screen z); r, g, b color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

26

© 2014 Steve Marschner •

Result of Gouraud shading pipeline

27
Demo

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

© 2014 Steve Marschner •

Some possible efficiency hacks:

• Blinn-Phong model requires
knowing
– normal
– light direction
– view direction

• Hack: use directional lights so l
doesn't change

• Hack: pretend viewer is
infinitely distant so view
direction doesn't change either.

28

© 2014 Steve Marschner •

Some possible efficiency hacks:

• Blinn-Phong model requires
knowing
– normal
– light direction
– view direction

• Hack: use directional lights so l
doesn't change

• Hack: pretend viewer is
infinitely distant so view
direction doesn't change either.

28

© 2014 Steve Marschner •

Non-diffuse Gouraud shading

• Can apply Gouraud shading to any illumination model
– it’s just an interpolation method

• Results are not so good with fast-varying models like
specular ones
– problems with any

highlights smaller
than a triangle

– (demo)

[F
ol

ey
 e

t
al

.]

29

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_20w/pipeline_demo/

© 2014 Steve Marschner •

Per-pixel (Phong*) shading

• Get higher quality by interpolating the normal
– just as easy as interpolating the color
– but now we are evaluating the illumination model per pixel

rather than per vertex (and normalizing the normal first)
– in pipeline, this means we are moving illumination from the

vertex processing stage to the fragment processing stage

30

(*not the same thing as Blinn-Phong reflection)

© 2014 Steve Marschner •

Per-pixel (Phong) shading

• Bottom line: produces much better highlights

[F
ol

ey
 e

t
al

.]

31

© 2014 Steve Marschner •

Pipeline for per-pixel shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– transform position (eye to screen space)
– pass through color

• Rasterizer
– interpolated parameters: z’ (screen z); r, g, b color; x, y, z

normal

• Fragment stage (output: color, z’)
– compute shading using interpolated color and normal
– write to color planes only if interpolated z’ < current z’

32

© 2014 Steve Marschner •

Result of per-pixel shading pipeline

33(demo)

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

Summary: Shading and Interpolation Techniques

Lambertian Blinn-phong

Gouraud

Phong

int
er

po
lat

io
n

reflection

