
Computer Graphics
Lecture/Lab 23


WebGL, continued 
Flat, Gouraud, and Phong "shading"

 



Announcements
• Final project groups due tonight.


• Still looking for a group? Let's meet up after class.


• HW3 graded


• If you submit late (today or after), let me know so we 
can go back and grade it.


• Final project report due Friday



A2 Artifact Results
A 4-way tie for first place!



3rd Place (tie): Sam Burgess07 - Lucas Binder



3rd Place (tie): Sam Burgess12 - Jonathan Derr



3rd Place (tie): Sam Burgess03 - Carter Schmidt



19 - Raiden Van Bronkhorst



Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this



OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.


• Tell GL how to interpret them (triangles, ...)


• GL executes custom-written vertex shader program on each 
vertex (to determine is location in clip space) 


• GL rasterizes primitives into pixel-shaped fragments 

• Execute custom-written fragment shader program on each 
fragment to determine its color.


• GL writes fragment colors to framebuffer pixels; neat things 
appear on your screen.

= normalized device  
coordinates
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• Send geometry
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Last time: Hello, Triangle!
• Send geometry


• Write a vertex shader


• Write a fragment shader

 by calling gl functions

in GLSL, the GL 
shader language



Shader Responsibilities
The vertex shader's job is to:

• assign a value to gl_Position,  

which specifies the vertex's position

• assign values to any varying parameters needed later


The fragment shader's job is to:

• assign a value to gl_FragColor,  

which specifies the fragment's color
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Shader Responsibilities
The vertex shader's job is to:

• assign a value to gl_Position,  

which specifies the vertex's position

• assign values to any varying parameters needed later


The fragment shader's job is to:

• assign a value to gl_FragColor,  

which specifies the fragment's color

Lab code so far:

gl_Position = vec4(Position, 1.0)

Lab code so far:

gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0)

*



WebGL Data Plumbing: Overview

framebuffer

uniform 
variables

attributes

varying parameters

varying parameters
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vertex program

fragment program

triangles

application

See also: Tuesday 
lecture notes
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WebGL Data Plumbing

framebuffer
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triangles

application
sent in an index buffer sent in vertex buffers

See also: Tuesday 
lecture notes



WebGL Data Plumbing
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GLSL - GL Shader Language

• Built-in types for small vectors/matrices 
(e.g., vec3, mat4). They have friendly 
constructors:  
 

• Multiplication does matrix multiplication:
// GL matrices are in column-major order
mat2 A = mat2(1.0, 2.0, 3.0, 4.0);
vec2 x = vec2(1.0, 0.0);

vec2 a = A * x; // a = (1,2)

vec3 a = vec3(1.0, 1.0, 1.0)
vec4 b = vec4(a, 1.0)



Task 2: Add a uniform
• Add a uniform variable called Matrix 

containing a 4x4 matrix


• In the vertex shader, multiply the Position 
attribute of the vertex by the Matrix to 
move the triangle vertices.



Terminology: data plumbing

framebuffer

uniform 
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application

See also: Tuesday 
lecture notes



GLSL - GL Shader Language

• varyings are declared in both the Vertex 
shader and in the Fragment shader.


• The vertex shader sets their values for each vertex, 
then the rasterizer interpolates their values for each 
fragment and passes to the fragment shader.


• By convention, varying names are usually 
chosen to begin with v, such as vColor or 
vNormal



Task 3: Add a varying
• Set up a varying parameter to set the 

color at each vertex


• Use the interpolated values in the fragment 
shader to set each fragment's color.



Rendering Realistic Images 
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Rendering Realistic Images 

• We have a pipeline that gives us access to 
the compute power of shaders and does a 
bunch of nice things for us.

• We know how to get data in and out

• How do we realistic-looking images using 
shading models like Lambertian and Blinn-
Phong?

but first, a rant about terminology
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Phong shading Lambertian 
shading in the fragment shader
• Shade (v.): determine color of a pixel

• Shader (n.): a program that runs on GPU

• Shading model (reflection or illumination model): 
light interaction model that determines a pixel's color

• Shading algorithm (interpolation technique): 
when, and in which shader, is the reflection model 
computed, and using what normals?

vertex shader, fragment shader

Lambertian reflection, Blinn-Phong reflection

flat shading, Gouraud shading, Phong shading

basically all of computer graphics...



© 2014 Steve Marschner • 

Flat shading (interpolation)

• Shade using the real normal of the triangle
– same result as ray tracing a bunch of triangles without 

normal interpolation

• Leads to constant shading and faceted appearance
– truest view of the  

mesh geometry
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© 2014 Steve Marschner • 

Pipeline for flat shading

• Vertex stage (input: position / vtx; color and normal / tri)
– transform position and normal (object to eye space)
– compute shaded color per triangle using normal
– transform position (eye to screen space)

• Rasterizer 
– interpolated parameters: z’ (screen z)
– pass through color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

23



© 2014 Steve Marschner • 

Result of flat-shading pipeline

24



© 2014 Steve Marschner • 

[G
ou

ra
ud

 t
he

si
s]

Gouraud shading

• Often we’re trying to draw  
smooth surfaces, so facets  
are an artifact
– compute colors at  

vertices using  
vertex normals

– interpolate colors  
across triangles

– “Gouraud shading”
– “Smooth shading”

25
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© 2014 Steve Marschner • 

Pipeline for Gouraud shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– compute shaded color per vertex
– transform position (eye to screen space)

• Rasterizer 
– interpolated parameters: z’ (screen z); r, g, b color

• Fragment stage (output: color, z’)
– write to color planes only if interpolated z’ < current z’

26



© 2014 Steve Marschner • 

Result of Gouraud shading pipeline

27
Demo

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/


© 2014 Steve Marschner • 

Some possible efficiency hacks:

• Blinn-Phong model requires 
knowing
– normal
– light direction
– view direction

• Hack: use directional lights so l 
doesn't change

• Hack: pretend viewer is 
infinitely distant so view 
direction doesn't change either.

28
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Non-diffuse Gouraud shading

• Can apply Gouraud shading to any illumination model
– it’s just an interpolation method

• Results are not so good with fast-varying models like 
specular ones
– problems with any 

highlights smaller 
than a triangle

– (demo)
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https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_20w/pipeline_demo/


© 2014 Steve Marschner • 

Per-pixel (Phong*) shading

• Get higher quality by interpolating the normal
– just as easy as interpolating the color
– but now we are evaluating the illumination model per pixel 

rather than per vertex (and normalizing the normal first)
– in pipeline, this means we are moving illumination from the 

vertex processing stage to the fragment processing stage

30

(*not the same thing as Blinn-Phong reflection)
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Per-pixel (Phong) shading

• Bottom line: produces much better highlights
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Pipeline for per-pixel shading

• Vertex stage (input: position, color, and normal / vtx)
– transform position and normal (object to eye space)
– transform position (eye to screen space)
– pass through color

• Rasterizer 
– interpolated parameters: z’ (screen z); r, g, b color; x, y, z 

normal

• Fragment stage (output: color, z’)
– compute shading using interpolated color and normal
– write to color planes only if interpolated z’ < current z’

32
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Result of per-pixel shading pipeline

33(demo)

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/


Summary: Shading and Interpolation Techniques

Lambertian Blinn-phong

Gouraud

Phong
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