e

Computer Graphics

Lecture/Lab 23
WebGL, continued
Flat, Gouraud, and Phong "shading"

Announcements

e Final project groups due tonight.

o Still looking for a group? Let's meet up after class.

* HW3 graded

e |f you submit late (today or after), let me know so we
can go back and grade it.

e Final project report due Friday
f@(fogﬂ/{

A2 Artifact Results

A 4-way tie for first place!

07 - Lucas Binder

.

Preveey

a%a| sesasvasliarenas
FReE
Ers

Z74 iz
Criiiiiiiiiiiciiisitiiiiiiie Jf in

1,
',
,
,
",

SRS
R
S S
S SSS,
SR
S
S
S

(!
",

,

03 - Carter Schmidt

19 - Raiden Van Bronkhorst

Graphics Pipeline: Overview

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

OpenGL: Your job, conceptually

e Send buffers full of data to GPU up front.
e Tell GL how to interpret them (triangles, ...)

* GL executes custom-written vertex shader program on each

vertex (to determine is location in clip space) = normalized device
coordinates

* GL rasterizes primitives into pixel-shaped fragments

* Execute custom-written fragment shader program on each
fragment to determine its color.

» GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

OpenGL: Your job, conceptually

(send geometry)
* |Send buffers full of data to GPU up front.

e [Tell GL how to interpret them (triangles, ...)

* GL executes custom-written vertex shader program on each

vertex (to determine is location in clip space) = normalized device
coordinates

* GL rasterizes primitives into pixel-shaped fragments

* Execute custom-written fragment shader program on each
fragment to determine its color.

» GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

OpenGL: Your job, conceptually

(send geometry)
* |Send buffers full of data to GPU up front.

e [Tell GL how to interpret them (triangles, ...)

(write vertex shader)

* GL executes custom-written [vertex shader program|on each

vertex (to determine is location in clip space) = normalized device
coordinates

* GL rasterizes primitives into pixel-shaped fragments

* Execute custom-written fragment shader program on each
fragment to determine its color.

» GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

OpenGL: Your job, conceptually

(send geometry)
* |Send buffers full of data to GPU up front.

e [Tell GL how to interpret them (triangles, ...)

(write vertex shader)

* GL executes custom-written [vertex shader program|on each

vertex (to determine is location in clip space) = normalized device
coordinates

* GL rasterizes primitives into pixel-shaped fragments

(write fragment shader)

* Execute custom-written|fragment shader program

ONn each

fragment to determine its color.

» GL writes fragment colors to framebuffer pixels; neat things

appear on your screen.

Last time: Hello, Triangle!

e Send geometry by calling g1 functions

* Write a vertex shader GLSL, the GL

e Write a fragment shader shader language

Last time: Hello, Triangle!

e Send geometry by calling g1 functions

* Write a vertex shader GLSL, the GL

e Write a fragment shader shader language

Shader Responsibilities

The vertex shader's job is to:

- assign a value t

which specifies the vertex's position
* assign values to an@pﬁrm needed later

The fragment shader's job-is-to: Www

- assign a valueto gl _FragColo
which specifies the fragment's color

Shader Responsibilities

The vertex shader's job is to:

- assign a value to gl _Position,
which specifies the vertex's position
- assign values to any varying parameters needed later

Lab c far:

gl Position F vec

The fragment shader's job is to:

- assign a value to g1_FragColor,
which specifies the fragment's color

Shader Responsibilities

The vertex shader's job is to:

- assign a value to gl _Position,
which specifies the vertex's position
- assign values to any varying parameters needed later

Lab code so far:
gl Position = vec4(Position, 1.0)

The fragment shader's job is to: rg ba
- assign a value to gl_FragColor’: ()
which specifies the fragment's color X

Lab code so far: |) |
gl FragColor = vec4(0.0, 0.0, 0.0,(::;}

WebGL Data Plumbing: Overview

/

application

lon |
triangles att@

vertex program

l l varying parameters

\ 4

rasterizer
uniform i

varying parameters
variables \ ll yne p
fragment program
depth l l COIOI"
framebuffer See also: Tuesday

lecture notes

WebGL Data Plumbing

triangles l lll

vertex program

/ 1

See also: Tuesday
lecture notes

WebGL Data Plumbing

sent in vertex buffers
application

triangles l lll

vertex program

/ 1

See also: Tuesday
lecture notes

WebGL Data Plumbing

sent in &n index buffer
\\¥

/!

sent in vertex buffers

application

triangles | | | |

attributes

vertex program

See also: Tuesday
lecture notes

WebGL Data Plumbing

application

triangles l

vertex program

uniform

variables -

l l l attributes

See also: Tuesday
lecture notes

GLSL - GL Shader Language

e Built-in types for small vectors/matrices
(e.g., vec3, mat4). They have friendly
constructors: a.X Swizzliw
vec3 a = vec3(1.0, 1.0, 1.0 c/

)
|
vecd b = vecd(a, 1.0)0)6% &,ﬂ > (l}

e Multiplication does matrix multiplication:
// GL matrices are in column-major order

AU 3| Y mat2 A = mat2(1.0, 2.0, 3.0, %
vﬂl q,oj vec2 X

vec2(1.0, 0.0);
vec2 a

R
A€§>X; // a = (1,2)

Task 2: Add a uniform

e Add a uniform variable called Matrix
containing a 4x4 matrix

e In the vertex shader, multiply the Position
attribute of the vertex by the Matrix to
move the triangle vertices.

Terminology: data plumbing

\ 4

triangles l

/

uniform
variables

T~

application

vertex program

l l l attributes

l varying parameters

rasterizer

l varying parameters

fragment program

depth l l color

framebuffer

See also: Tuesday
lecture notes

GLSL - GL Shader Language

e varyings are declared in both the Vertex
shader and in the Fragment shader.

e The vertex shader sets their values for each vertex,
then the rasterizer interpolates their values for each
fragment and passes to the fragment shader.

e By convention, varying names are usually

chosen to begin with v, such as vColor or
vNormal ETTT—

Task 3: Add a varying

e Set up a varying parameter to set the
color at each vertex

e Use the interpolated values in the fragment
shader to set each fragment's color.

Rendering Realistic Images

Rendering Realistic Images

e \We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

Rendering Realistic Images

e \We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

* \We know how to get data in and out

Rendering Realistic Images

e \We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

* \We know how to get data in and out

* How do we realistic-looking images using
shading models like Lambertian and Blinn-
Phong?

Rendering Realistic Images

e \We have a pipeline that gives us access to
the compute power of shaders and does a
bunch of nice things for us.

* \We know how to get data in and out

* How do we realistic-looking images using
shading models like Lambertian and Blinn-
Phong?

but first, a rant about terminology

Phong shading Lambertian
shading in the fragment shader

Phong shading Lambertian
shading in the fragment shader

e Shade (v.): determine color of a pixel

Phong shading Lambertian
shading in the fragment shader

e Shade (v.): determine color of a pixel
basically all of computer graphics...

Phong shading Lambertian
shading in the fragment shader

e Shade (v.): determine color of a pixel
basically all of computer graphics...

e Shader (n.): a program that runs on GPU

Phong shading Lambertian
shading in the fragment shader

e Shade (v.): determine color of a pixel
basically all of computer graphics...

e Shader (n.): a program that runs on GPU
vertex shader, fragment shader

Phong shading Lambertian
shading in the fragment shader

e Shade (v.): determine color of a pixel
basically all of computer graphics...

e Shader (n.): a program that runs on GPU
vertex shader, fragment shader

e Shading model (reflection or illumination model):
light interaction model that determines a pixel's color

Phong shading Lambertian
shading in the fragment shader

e Shade (v.): determine color of a pixel
basically all of computer graphics...

e Shader (n.): a program that runs on GPU
vertex shader, fragment shader

e Shading model (reflection or illumination model):
light interaction model that determines a pixel's color
Lambertian reflection, Blinn-Phong reflection

Phong shading Lambertian
shading in the fragment shader

e Shade (v.): determine color of a pixel
basically all of computer graphics...

e Shader (n.): a program that runs on GPU
vertex shader, fragment shader

e Shading model (reflection or illumination model):
light interaction model that determines a pixel's color
Lambertian reflection, Blinn-Phong reflection

e Shading algorithm (interpolation technique):
when, and in which shader, is the reflection model
computed, and using what normals?

Phong shading Lambertian
shading in the fragment shader

e Shade (v.): determine color of a pixel
basically all of computer graphics...

e Shader (n.): a program that runs on GPU
vertex shader, fragment shader

e Shading model (reflection or illumination model):
light interaction model that determines a pixel's color
Lambertian reflection, Blinn-Phong reflection

e Shading algorithm (interpolation technique):
when, and in which shader, is the reflection model
computed, and using what normals?
flat shading, Gouraud shading, Phong shading

Flat shading (interpolation)

* Shade using the real normal of the triangle

— same result as ray tracing a bunch of triangles without
normal interpolation

* Leads to constant shading and faceted appearance

— truest view of the
mesh geometry

Plate 11.29 Shutterbug. Indi ally shaded p ons with diffuse reflection (Sections 14.4.2
and 16.2.3). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
Pixar’s PhotoRealistic RenderMan™ software.)

[Foley et al.]

N

© 2014 Steve Marschner ¢ 2

Pipeline for flat shading

* Vertex stage (input: position / vtx; color and normal / tri)
— transform position and normal (object to eye space)
— compute shaded color per triangle using normal
— transform position (eye to screen space)
* Rasterizer
— interpolated parameters: z’ (screen z)
— pass through color
* Fragment stage (output: color,)

— write to color planes only if interpolated z’ < current z’

© 2014 Steve Marschner * 23

Result of flat-shading pipeline

© 2014 Steve Marschner * 24

Gouraud shading

* Often we're trying to draw
smooth surfaces, so facets
are an artifact

— compute colors at
vertices using
vertex normals

— interpolate colors
across triangles

— “Gouraud shading”
— “Smooth shading”

© 2014 Steve Marschner ¢

[Gouraud thesis]

25

Gouraud shading

* Often we're trying to draw
smooth surfaces, so facets

are an artifact

— compute colors at
vertices using
vertex normals

— interpolate colors
across triangles

— “Gouraud shading”
— “Smooth shading”

Plate I1.30 Shutterbug. Gouraud shaded polygons with diffuse reflection (Sections 14.4.3
and 16.2.4). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
Pixar's PhotoRealistic RenderMan™ software.)

'u©| Steve Marschner ¢

[Foley et al.]

2

(9,

Pipeline for Gouraud shading

* Vertex stage (input: position, color, and normal / vtx)
— transform position and normal (object to eye space)
— compute shaded color per vertex
— transform position (eye to screen space)

* Rasterizer
— interpolated parameters: z’ (screen z); r, g, b color

* Fragment stage (output: color,)

— write to color planes only if interpolated z’ < current z’

© 2014 Steve Marschner ¢ 26

Result of Gouraud shading pipeline

© 2014 Steve Marschner « 27

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

NN //
//'\\

Some possible efficiency hacks:

* Blinn-Phong model requires
knowing <
— normal
— light direction

— view direction

* Hack: use directional lights so |
doesn't change

* Hack: pretend viewer is
infinitely distant so view

direction doesn't change either.
© 2014 Steve Marschner » 28

NN //
//'\\

Some possible efficiency hacks:

* Blinn-Phong model requires
knowing <
— normal
— light direction
— view direction

* Hack: use directional lights so |
doesn't change

<<
* Hack: pretend viewer is
infinitely distant so view
direction doesn't change either.

© 2014 Steve Marschner ¢

28

Non-diffuse Gouraud shading

Can apply Gouraud shading to any illumination model
— it’s just an interpolation method

Results are not so good with fast-varying models like
specular ones

— problems with any
highlights smaller
than a triangle

— (demo)

Plate 11.31 Shutterbug. Gouraud shaded polygons with specular reflec:

(Sections 14.4.
#nd 16.2.5). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
Fixar's PhotoRealistic RenderMan™ software.)

© 2014 Steve Marschner *

[Foley et al.]

N
O

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_20w/pipeline_demo/

(*not the same thing as Blinn-Phong reflection)

Per-pixel (Phong¥) shading

* Get higher quality by interpolating the normal

— just as easy as interpolating the color

— but now we are evaluating the illumination model per pixel
rather than per vertex (and normalizing the normal first)

— in pipeline, this means we are moving illumination from the
vertex processing stage to the fragment processing stage

© 2014 Steve Marschner ¢ 30

Per-pixel (Phong) shading

* Bottom line: produces much better highlights

Plate 11.32 Shutterbug. Phong shaded polygons with specular reflection (Sections 14.4.4 and
16.2.5). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar’s
PhotoRealistic RenderMan™ software.)

[Foley et al.]

tterbug. Gouraud shaded polygons with specular reflection (Sections 14.4.4
yright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using
listicRenderMan™ software.)

© 2014 Steve Marschner « 31

Pipeline for per-pixel shading

* Vertex stage (input: position, color, and normal / vtx)
— transform position and normal (object to eye space)
— transform position (eye to screen space)
— pass through color

* Rasterizer

— interpolated parameters: z’ (screen z);r, g, b color; x,y, z
normal

* Fragment stage (output: color,)
— compute shading using interpolated color and normal
— write to color planes only if interpolated z’ < current z’

© 2014 Steve Marschner ¢ 32

Result of per-pixel shading pipeline

(m) © 2014 Steve Marschner « 33

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

Summary: Shading and Interpolation Techniques
reflection

Lambertian Blinn-phong

Gouraud

C
O
e
o

o

o

| -

)
i
k=

