
Computer Graphics
Lecture/Lab 22


Introducing WebGL

 



Announcements
• Final project


• Groups due Wednesday; everyone needs to submit


• Proposal due Friday; feel free to message/talk to me before then


• Take-home exam out Friday, due Monday


• ask your HW-related questions this week


• A2 artifact voting extended by 1 day - get your votes in by 
tonight!


• Today: hybrid lecture/lab


• course webpage links to handout and code template.



Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this



Last time
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

Backface culling 
Clipping

Z buffering



Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this



OpenGL: One implementation 
of the graphics pipeline.

And now: a highly abridged and only 
somewhat accurate history of OpenGL.



OpenGL: The Bad Old Days

• OpenGL was (still is) a state machine.


• Basic usage:


1. Set flags for shading mode (Lambertian or Blinn-
Phong), interpolation methods, depth buffer, ...


2. Set GL to triangle mode


3. Send vertices to GPU one at a time.


4. Call draw function to draw to the screen.



OpenGL: Nowadays
• Send buffers full of data to GPU up front.


• Tell GL how to interpret them (triangles, line segments, ...)


• GL executes custom-written vertex shader program on each 
vertex (to determine is location in clip space) 


• GL rasterizes primitives into pixel-shaped fragments


• GL executes custom-written fragment shader program on 
each fragment to determine its color.


• GL writes fragment colors to framebuffer pixels; neat things 
appear on your screen.

= normalized device  
coordinates



OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.


• Tell GL how to interpret them (triangles, ...)


• GL executes custom-written vertex shader program on each 
vertex (to determine its location in clip space) 


• GL rasterizes primitives into pixel-shaped fragments 

• GL executes custom-written fragment shader program on 
each fragment to determine its color.


• GL writes fragment colors to framebuffer pixels; neat things 
appear on your screen.

= normalized device  
coordinates

(send geometry)

(write vertex shader)

(write fragment shader)



© 2014 Steve Marschner • 

Pipeline for minimal operation

• Vertex stage (input: position / vtx; color / tri)
– transform position (object to screen space)
– pass through color

• Rasterizer 
– pass through color

• Fragment stage (output: color)
– write to color planes

10



© 2014 Steve Marschner • 

Result of minimal pipeline

11

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/


OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.


• Tell GL how to interpret them (triangles, ...)


• GL executes custom-written vertex shader program on each 
vertex (to determine is location in clip space) 


• GL rasterizes primitives into pixel-shaped fragments 

• Execute custom-written fragment shader program on each 
fragment to determine its color.


• GL writes fragment colors to framebuffer pixels; neat things 
appear on your screen.

= normalized device  
coordinates

(send geometry)

(write vertex shader)

(write fragment shader)t



Terminology, so far
• Clipping


• Rasterization


• Interpolation


• Fragment


• Shader



WebGL: Your Jobs
• Send geometry


• Write a vertex shader


• Write a fragment shader

 by calling gl functions

in GLSL, the GL 
shader language



WebGL Data Plumbing: Overview

framebuffer

uniform 
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application

See also: today's 
lecture notes



WebGL: Hello, Triangle!
• Send geometry


• Write a vertex shader


• Write a fragment shader

 by calling gl functions

in GLSL, the GL 
shader language

A first pass at the lab code...



WebGL: Hello, Triangle!
• Send geometry


• Write a vertex shader


• Write a fragment shader

 by calling gl functions

in GLSL, the GL 
shader language

A first pass at the lab code...

okay so we saw some unfamiliar words in there:
buffer 

attribute



WebGL Data Plumbing: Overview

framebuffer

uniform 
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application

See also: today's 
lecture notes



WebGL Data Plumbing

framebuffer

uniform 
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application
sent in an index buffer sent in vertex buffers

See also: today's 
lecture notes

G t

d



WebGL: Hello, Triangle!
• Send geometry


• Write a vertex shader


• Write a fragment shader

 by calling gl functions

in GLSL, the GL 
shader language

A first look at the shader code...



Shader Responsibilities
The vertex shader's job is to:

• assign a value to gl_Position,  

which specifies the vertex's position  

• assign values to any varying parameters needed later


The fragment shader's job is to:

• assign a value to gl_FragColor,  

which specifies the fragment's color



GLSL - GL Shader Language

• A C-like mini-language


• Basic program looks like:


• Built-in types for small vectors/matrices 
(e.g., vec3, mat4)

// some declarations

void main() {
    // main program
}I



Task 1: Turn the triangle black
• Change the fragment shader's source code 

to set the triangle color to black instead of 
white.


• Note: colors are vec4s; the 4th channel is 
transparency ("alpha"):


• 0.0 is fully transparent, 1.0 is fully opaque



WebGL Data Plumbing

framebuffer

uniform 
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application
sent in an index buffer sent in vertex buffers

See also: today's 
lecture notes



WebGL Data Plumbing

framebuffer

uniform 
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application

See also: today's 
lecture notes



GLSL - GL Shader Language

• Built-in types for small vectors/matrices 
(e.g., vec3, mat4)


• Multiplication on the above types does 
matrix multiplication:

// GL matrices are in column-major order
mat2 A = mat2(1.0,2.0,3.0,4.0);
vec2 x = vec2(1.0, 0.0);

vec2 a = A * x; // a = (1,2)



Task 2: Add a uniform
• Add a uniform variable called Matrix 

containing a 4x4 matrix


• In the vertex shader, multiply the Position 
attribute of the vertex by the Matrix to 
move the triangle vertices.



Terminology: data plumbing

framebuffer

uniform 
variables

attributes

varying parameters

varying parameters

colordepth

rasterizer

vertex program

fragment program

triangles

application

See also: today's 
lecture notes



GLSL - GL Shader Language

• varyings are declared in both the Vertex 
shader and in the Fragment shader.


• The vertex shader sets their values for each vertex, 
then the rasterizer interpolates their values for each 
fragment and passes to the fragment shader.


• By convention, varying names are usually 
chosen to begin with v, such as vColor or 
vNormal



Task 3: Add a varying
• Set up a varying parameter to set the 

color at each vertex


• Use the interpolated values in the fragment 
shader to set each fragment's color.


