ue

Computer Graphics

Lecture/Lab 22
Introducing WebGL

Announcements

* Final project
* Groups due Wednesday; everyone needs to submit

* Proposal due Friday; feel free to message/talk to me before then

* Take-home exam out Friday, due Monday

* ask your HW-related questions this week

e A2 artifact voting extended by 1 day - get your votes in by
tonight!

e Today: hybrid lecture/lab

e course webpage links to handout and code template.

Graphics Pipeline: Overview

you are here wmp-

3D transformations; shading == VERTEX

conversion of primitives to pixels mmp

blending, compositing, shading wmp

user sees this ==

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this

Last time

)

—p

-

-

VERTEX

Backface culling
Clipping

Z buffering

Graphics Pipeline: Overview

you are here wmp-

3D transformations; shading == VERTEX

conversion of primitives to pixels mmp

blending, compositing, shading wmp

user sees this ==

OpenGL: One implementation
of the graphics pipeline.

And now: a highly abridged and only
somewhat accurate history of OpenGL.

OpenGL: The Bad Old Days

e OpenGL was (still is) a state machine.

e Basic usage:

1.

Set flags for shading mode (Lambertian or Blinn-
Phong), interpolation methods, depth buffer, ...

Set GL to triangle mode
Send vertices to GPU one at a time.

Call draw function to draw to the screen.

OpenGL: Nowadays

e Send buffers full of data to GPU up front.
e Tell GL how to interpret them (triangles, line segments, ...)

* GL executes custom-written vertex shader program on each

vertex (to determine is location in clip space) =normalized device
coordinates

* GL rasterizes primitives into pixel-shaped fragments

* GL executes custom-written fragment shader program on
each fragment to determine its color.

e GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

OpenGL: Your job, conceptually

(send geometry)

e [Send buffers full of data to GPU up front.

e [Tell GL how to interpret them (triangles, ...)

(write vertex shader)

* GL executes custom-written|vertex shader program |on each

vertex (to determine its location in clip space) = normalized device
coordinates

* GL rasterizes primitives into pixel-shaped fragments

(write fragment shader)

* GL executes custom-written|fragment shader program

each fragment to determine Its co

or.

on

e GL writes fragment colors to framebuffer pixels; neat things

appear on your screen.

Pipeline for minimal operation

* Vertex stage (input: position / vtx; color / tri)

— transform position (object to screen space)
— pass through color

* Rasterizer
— pass through color

* Fragment stage (output: color)
— write to color planes

© 2014 Steve Marschner ¢ 10

Result of minimal pipeline

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480 21w/pipeline demo/

© 2014 Steve Marschner ¢ |1

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

OpenGL: Your job, conceptually

(send geometry) £~

e [Send buffers full of data to GPU up front.
e [Tell GL how to interpret them (triangles, ...) (write vertex shader]

* GL executes custom-written|vertex shader program |on each

vertex (to determine is location in clip space)p= normalized device
coordinates

* GL rasterizes primitives into pixel-shaped fragments

,_|, (write fragment shader)

* Execute custom-written|fragment shader program

fragment to determine its color.

n each

e GL writes fragment colors to framebuffer pixels; neat things

appear on your screen.

Terminology, so far

e Clipping
e Rasterization
* |nterpolation

* Fragment

e Shader

WebGL: Your Jobs

e Send geometry by calling gl functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'2der language

WebGL Data Plumbing: Overview

A4

application

triangles l lll attributes

uniform
variables

/

T~

vertex program

l l varying parameters

rasterizer

l l varying parameters

fragment program

depth l l color

framebuffer See also: today's

lecture notes

WebGL: Hello, Triangle!

e Send geometry by calling gl functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'2der language

A first pass at the lab code...

WebGL: Hello, Triangle!

e Send geometry by calling gl functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'2der language

A first pass at the lab code...

okay so we saw some unfamiliar words in there:

buffer
attribute

WebGL Data Plumbing: Overview

A4

application

triangles l lll attributes

uniform
variables

/

T~

vertex program

l l varying parameters

rasterizer

l l varying parameters

fragment program

depth l l color

framebuffer See also: today's

lecture notes

WebGL Data Plumbing

sent in an index buffer

sentin ertex buffers

application

triangles l lll

/!

vertex program

)

See also: today's
lecture notes

WebGL: Hello, Triangle!

e Send geometry by calling gl functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'2der language

A first look at the shader code...

Shader Responsibilities

The vertex shader's job is to:

- assign a value togl_Position,
which specifies the vertex's position

- assign values to any varying parameters needed later

The fragment shader's job is to:

- assign a value to.gl*FragColor,
which specifies the fragment's color

GLSL - GL Shader Language

e A C-like mini-language

e Basic program looks like: %// some declarations

void main() {
(// main program

}

e Built-in types for small vectors/matrices

(e.g., vec3, mat4)
T

Task 1: Turn the triangle black

e Change the fragment shader's source code
to set the triangle color to black instead of
white.

e Note: colors are vecds; the 4th channel is
transparency ("alpha"):

0.0 is fully transparent, 1.0 is fully opaque

WebGL Data Plumbing

sent in an index buffer

—

/!

sent in vertex buffers
application

triangles l lll

vertex program

See also: today's
lecture notes

WebGL Data Plumbing

application

triangles l lll attributes

vertex program
11

uniform

variables

See also: today's
lecture notes

GLSL - GL Shader Language

e Built-in types for small vectors/matrices
(e.g., vec3, mat4)

 Multiplication on the above types does
matrix multiplication:

// GL matrices are in column-major order

mat2 A = mat2(1.0,2.0,3.0,4.0);
vec2 X = vec2(1.0, 0.0);
vec2 a = A * x; // a= (1,2)

Task 2: Add a uniform

e Add a uniform variable called Matrix
containing a 4x4 matrix

e |In the vertex shader, multiply the Position
attribute of the vertex by the Matrix to
move the triangle vertices.

Terminology: data plumbing

/

application

vertex program

triangles l lll attributes

l varying parameters

v
rasterizer
uniform l varying parameters
variables \
fragment program
framebuffer See also: today's

lecture notes

GLSL - GL Shader Language

e varyings are declared in both the Vertex
shader and in the Fragment shader.

e The vertex shader sets their values for each vertex,
then the rasterizer interpolates their values for each
fragment and passes to the fragment shader.

e By convention, varying names are usually
chosen to begin with v, such as vColor or
vNormal

Task 3: Add a varying

e Set up a varying parameter to set the
color at each vertex

e Use the interpolated values in the fragment
shader to set each fragment's color.

