
Computer Graphics
Lecture/Lab 22


Introducing WebGL

 



Announcements
• Final project


• Groups due Wednesday; everyone needs to submit


• Proposal due Friday; feel free to message/talk to me before then


• Take-home exam out Friday, due Monday


• ask your HW-related questions this week


• A2 artifact voting extended by 1 day - get your votes in by 
tonight!


• Today: hybrid lecture/lab


• course webpage links to handout and code template.
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OpenGL: One implementation 
of the graphics pipeline.

And now: a highly abridged and only 
somewhat accurate history of OpenGL.



OpenGL: The Bad Old Days

• OpenGL was (still is) a state machine.


• Basic usage:


1. Set flags for shading mode (Lambertian or Blinn-
Phong), interpolation methods, depth buffer, ...


2. Set GL to triangle mode


3. Send vertices to GPU one at a time.


4. Call draw function to draw to the screen.



OpenGL: Nowadays
• Send buffers full of data to GPU up front.


• Tell GL how to interpret them (triangles, line segments, ...)


• GL executes custom-written vertex shader program on each 
vertex (to determine is location in clip space) 


• GL rasterizes primitives into pixel-shaped fragments


• GL executes custom-written fragment shader program on 
each fragment to determine its color.


• GL writes fragment colors to framebuffer pixels; neat things 
appear on your screen.

= normalized device  
coordinates



OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.


• Tell GL how to interpret them (triangles, ...)


• GL executes custom-written vertex shader program on each 
vertex (to determine its location in clip space) 


• GL rasterizes primitives into pixel-shaped fragments 

• GL executes custom-written fragment shader program on 
each fragment to determine its color.


• GL writes fragment colors to framebuffer pixels; neat things 
appear on your screen.
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Pipeline for minimal operation

• Vertex stage (input: position / vtx; color / tri)
– transform position (object to screen space)
– pass through color

• Rasterizer 
– pass through color

• Fragment stage (output: color)
– write to color planes
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Result of minimal pipeline
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https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_21w/pipeline_demo/


OpenGL: Your job, conceptually
• Send buffers full of data to GPU up front.


• Tell GL how to interpret them (triangles, ...)


• GL executes custom-written vertex shader program on each 
vertex (to determine is location in clip space) 


• GL rasterizes primitives into pixel-shaped fragments 

• Execute custom-written fragment shader program on each 
fragment to determine its color.


• GL writes fragment colors to framebuffer pixels; neat things 
appear on your screen.

= normalized device  
coordinates

(send geometry)

(write vertex shader)

(write fragment shader)t



Terminology, so far
• Clipping


• Rasterization


• Interpolation


• Fragment


• Shader



WebGL: Your Jobs
• Send geometry


• Write a vertex shader


• Write a fragment shader

 by calling gl functions

in GLSL, the GL 
shader language



WebGL Data Plumbing: Overview
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See also: today's 
lecture notes



WebGL: Hello, Triangle!
• Send geometry


• Write a vertex shader


• Write a fragment shader

 by calling gl functions

in GLSL, the GL 
shader language

A first pass at the lab code...
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okay so we saw some unfamiliar words in there:
buffer 

attribute
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WebGL Data Plumbing
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WebGL: Hello, Triangle!
• Send geometry


• Write a vertex shader


• Write a fragment shader

 by calling gl functions

in GLSL, the GL 
shader language

A first look at the shader code...



Shader Responsibilities
The vertex shader's job is to:

• assign a value to gl_Position,  

which specifies the vertex's position  

• assign values to any varying parameters needed later


The fragment shader's job is to:

• assign a value to gl_FragColor,  

which specifies the fragment's color



GLSL - GL Shader Language

• A C-like mini-language


• Basic program looks like:


• Built-in types for small vectors/matrices 
(e.g., vec3, mat4)

// some declarations

void main() {
    // main program
}I



Task 1: Turn the triangle black
• Change the fragment shader's source code 

to set the triangle color to black instead of 
white.


• Note: colors are vec4s; the 4th channel is 
transparency ("alpha"):


• 0.0 is fully transparent, 1.0 is fully opaque
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GLSL - GL Shader Language

• Built-in types for small vectors/matrices 
(e.g., vec3, mat4)


• Multiplication on the above types does 
matrix multiplication:

// GL matrices are in column-major order
mat2 A = mat2(1.0,2.0,3.0,4.0);
vec2 x = vec2(1.0, 0.0);

vec2 a = A * x; // a = (1,2)



Task 2: Add a uniform
• Add a uniform variable called Matrix 

containing a 4x4 matrix


• In the vertex shader, multiply the Position 
attribute of the vertex by the Matrix to 
move the triangle vertices.



Terminology: data plumbing
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GLSL - GL Shader Language

• varyings are declared in both the Vertex 
shader and in the Fragment shader.


• The vertex shader sets their values for each vertex, 
then the rasterizer interpolates their values for each 
fragment and passes to the fragment shader.


• By convention, varying names are usually 
chosen to begin with v, such as vColor or 
vNormal



Task 3: Add a varying
• Set up a varying parameter to set the 

color at each vertex


• Use the interpolated values in the fragment 
shader to set each fragment's color.


