
Lecture 17: Viewing Transformations
Transforming Normals

One last thing to note about affine transformations is that they don't work right on normals. See
whiteboard notes for intuition and derivation, but the upshot is that to transform normal vectors,
multiply by the inverse transpose of the transformation matrix:

Wireframe Rendering using Transformations

Object-order rendering is based around the idea of using transformations to get the objects in a
scene from where they live (object space) to where we see them through a camera (image space). In
fact, since they're composable, we're ultimately going to accomplish this with little more than a single
matrix multiplication.

We're going to start with just geometry, and here's the trick: under all the transformations we use,
lines stay lines. Which means I can take two points with a line between them, transform just the two
points, then draw the line between the transformed points. This is going to give us the ability to
render meshes in what's called wireframe, where geometry is represented by vertices connected by
lines.

 In raytracing, we had to do a lot of work to find the closest object. In wireframe rendering, objects are
not solid, and therefore they don't occlude each other, so we don't care what's closest. We'll talk later
about how to fix this and render solid surfaces using object-order rendering.

Our goal is to get from object space (e.g., the coordinates in which we modeled our cube with side
length 2) all the way to an image of the cube. The approach will be to take all the cube vertices,
transform them, then draw lines between them in 2D to form the wireframe cube.

How the image appears depends on quite a number of things - the transformation we're going to
build is pretty complicated. brainstorm:

Position and orientation of the model in the scene

Position and orientation of the camera in the scene

The type of camera and its parameters

Orthographic vs Perspective
Viewport size and position

Pixel dimensions of the image

To handle all these variables, we're going to break the viewing transformation up into four pieces:

Model transformation (per object)

moves object to its world-space pose in the scene
OR converts object from its local frame to world frame

View (camera) transformation

move the camera to its world-space pose in the scene
OR convert everything in the scene from world coordinates to canonical camera
coordinates

Projection transformation

squish and warp the scene into a conveniently shaped box (the canonical view volume)

OR change coordinates to normalized device coordinates

In both views:

the whole viewable scene lives in the box defined by , , and
, and

the z axis is lined up with each pixel's viewing ray
Viewport Transformation:

transform objects from the canonical view volume onto the image plane
convert from (x, y) normalized device coordinates to , and carry the z coordinate along
unchanged (we'll need it later!)

The good news is that we already have the machinery for almost all of these! Next, we'll start filling in
the few pieces we don't, then put it all together into a wireframe renderer.

	Lecture 17: Viewing Transformations
	Transforming Normals
	Wireframe Rendering using Transformations

