

Computer Graphics

Lecture 13 **Transformation Composition Homogeneous Coordinates Affine Transformations**

Announcements

TODO Today

- Composing linear transformations
- Homogeneous coordinates
- ^Affine transformations: change-of-frame view
- Rigid transformations
- ^Affine composition

TODO Tomorrow

- Similarity transformations
- Inverses
- 3D
- 3D Rotations
- Transforming points vs vectors
- Transforming normals

Last time: 2D Matrix Transformations

- Reflection
	- can consider it a special case of nonuniform scale

Composing Linear Transformations

 $A: \mathbb{R}^2 \to \mathbb{R}^2$ $B: \mathbb{R}^2 \to \mathbb{R}^2$ $A * B: \mathbb{R}^2 \to \mathbb{R}^2$

- Vec2 A(in)::Vec2
- Vec2 B(in::Vec2)
- $A(B(x::Vec2)) \Rightarrow Vec2$

Composing Linear Transformations

$$
A: \mathbb{R}^2 \to \mathbb{R}^2
$$
vec2 A(in)::vec2
\n
$$
B: \mathbb{R}^2 \to \mathbb{R}^2
$$
vec2 B(in.:vec2)
\n
$$
A * B: \mathbb{R}^2 \to \mathbb{R}^2
$$
 A(B(x.:vec2) =& > vec2
\nExample:
\n
$$
\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}
$$
 [0.866 -0.5]
\n
$$
\begin{bmatrix} 0.866 & -0.5 \\ 0.5 & 0.866 \end{bmatrix}
$$

Composing Linear Transformations

$$
A: \mathbb{R}^2 \to \mathbb{R}^2
$$
vec2 A(in)::vec2
\n
$$
B: \mathbb{R}^2 \to \mathbb{R}^2
$$
vec2 B(in):vec2)
\n
$$
A * B: \mathbb{R}^2 \to \mathbb{R}^2
$$
A(B(x.:vec2) =&)vec2
\nExample:
$$
[-1 \ 0] \ [0.866 \ -0.5]
$$

Example:

$$
\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0.866 & -0.5 \\ 0.5 & 0.866 \end{bmatrix}
$$

• Translation

About that translation thing...

• To the notes!

Composing transformations

• Want to move an object, then move it some more

$$
\mathbf{p} \to T(\mathbf{p}) \to S(T(\mathbf{p})) = (S \circ T)(\mathbf{p})
$$

- We need to represent *S* o *T* ("S compose T") – and would like to use the same representation as for *S* and *T*
- Translation easy:

$$
T(\mathbf{p}) = \mathbf{p} + \mathbf{u}_T; S(\mathbf{p}) = \mathbf{p} + \mathbf{u}_S
$$

$$
(S \circ T)(\mathbf{p}) = \mathbf{p} + (\mathbf{u}_T + \mathbf{u}_S)
$$

• Translation by \mathbf{u}_T then by \mathbf{u}_S is translation by $\mathbf{u}_T + \mathbf{u}_S$ – commutative!

Composing transformations

• Linear transformations also straightforward

$$
T(\mathbf{p}) = M_T \mathbf{p}; S(\mathbf{p}) = M_S \mathbf{p}
$$

$$
(S \circ T)(\mathbf{p}) = M_S M_T \mathbf{p}
$$

- Transforming first by M_T then by M_S is the same as transforming by $M_S M_T$
	- only sometimes commutative
		- e.g. rotations & uniform scales
		- e.g. non-uniform scales w/o rotation
	- $-$ Note M_f , or *S* o *T*, is *T* first, then *S*

Combining linear with translation

- Need to use both in single framework
- Can represent arbitrary seq. as $T(\mathbf{p}) = M\mathbf{p} + \mathbf{u}$ $-T(\mathbf{p})=M_T\mathbf{p}+\mathbf{u}_T$ $-S(p) = M_S p + u_S$ $\Gamma(S \circ T)(p) = M_S(M_Tp + u_T) + u_S$ $= (M_S M_T) \mathbf{p} + (M_S \mathbf{u}_T + \mathbf{u}_S)$ $-$ e.g. $S(T(0)) = S({\bf u}_T)$
- Transforming by M_T and \mathbf{u}_T , then by M_S and \mathbf{u}_S , is the same as transforming by $M_S M_T$ and $\mathbf{u}_S + M_S \mathbf{u}_T$ – This will work but is a little awkward

Homogeneous coordinates

- A trick for representing the foregoing more elegantly
- Extra component *w* for vectors, extra row/column for matrices
	- for affine, can always keep *w* = 1
- Represent linear transformations with dummy extra row and column

$$
\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \\ 1 \end{bmatrix}
$$

Homogeneous coordinates

• Represent translation using the extra column

$$
\begin{bmatrix} 1 & 0 & t \\ 0 & 1 & s \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+t \\ y+s \\ 1 \end{bmatrix}
$$

Homogeneous coordinates

• Composition just works, by 3x3 matrix multiplication

$$
\begin{bmatrix} M_S & \mathbf{u}_S \ 0 & 1 \end{bmatrix} \begin{bmatrix} M_T & \mathbf{u}_T \ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} (M_S M_T) \mathbf{p} + (M_S \mathbf{u}_T + \mathbf{u}_S) \\ 1 \end{bmatrix}
$$

- This is exactly the same as carrying around *M* and **u**
	- but cleaner
	- and generalizes in useful ways as we'll see later

Affine transformations

- The set of transformations we have been looking at is known as the "affine" transformations
	- straight lines preserved; parallel lines preserved
	- ratios of lengths along lines preserved (midpoints preserved)

Affine change of coordinates

• Six degrees of freedom

Affine change of coordinates

- Coordinate frame: point plus basis
- Interpretation: transformation changes representation of point from one basis to another
- "Frame to canonical" matrix has frame in columns
	- takes points represented in frame
	- represents them in canonical basis
	- $-$ e.g. [0 0], [1 0], [0 1]
- Seems backward but bears thinking about

Rigid motions

- A transform made up of only translation and rotation is a *rigid motion* or a *rigid body transformation*
- The linear part is an orthonormal matrix

$$
R = \begin{bmatrix} Q & \mathbf{u} \\ 0 & 1 \end{bmatrix}
$$

• Inverse of orthonormal matrix is transpose – so inverse of rigid motion is easy:

$$
R^{-1}R = \begin{bmatrix} Q^T & -Q^T \mathbf{u} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} Q & \mathbf{u} \\ 0 & 1 \end{bmatrix}
$$

Transforming points and vectors

- Recall distinction points vs. vectors
	- vectors are just offsets (differences between points)
	- points have a location
		- represented by vector offset from a fixed origin
- Points and vectors transform differently
	- points respond to translation; vectors do not

$$
\mathbf{v} = \mathbf{p} - \mathbf{q}
$$

\n
$$
T(\mathbf{x}) = M\mathbf{x} + \mathbf{t}
$$

\n
$$
T(\mathbf{p} - \mathbf{q}) = M\mathbf{p} + \mathbf{t} - (M\mathbf{q} + \mathbf{t})
$$

\n
$$
= M(\mathbf{p} - \mathbf{q}) + (\mathbf{t} - \mathbf{t}) = M\mathbf{v}
$$

Affine Composition

• Composition just works, by 3x3 matrix multiplication

$$
\begin{bmatrix} M_S & \mathbf{u}_S \\ 0 & 1 \end{bmatrix} \begin{bmatrix} M_T & \mathbf{u}_T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} (M_S M_T) \mathbf{p} + (M_S \mathbf{u}_T + \mathbf{u}_S) \\ 1 \end{bmatrix}
$$

Affine Composition Example: Rotation about not-the-origin

- Want to rotate about a particular point – could work out formulas directly…
- Know how to rotate about the origin
	- so translate that point to the origin

 $M=T^{-1}RT$

Similarity Transformations

- When we move an object to the canonical frame to apply a transformation, we are changing coordinates
	- the transformation is easy to express in object's frame
	- so define it there and transform it

$$
T_e = FT_F F^{-1}
$$

- T_e is the transformation expressed wrt. $\{e_1, e_2\}$
- T_F is the transformation expressed in natural frame
- *F* is the frame-to-canonical matrix [*u v p*]
- This is a *similarity transformation*