
Lecture 10: Barycentric Coordinates and
Ray-Triangle Intersection

 

 

We'd like to intersect rays with triangles.

One way to do this is to intersect with the plane, then determine whether your position on the plane 
is within the triangle. We're going to do it this way, but the math will end up solving both in one go.

Ray-Plane Intersection  
To intersect a ray with a plane, we need an equation for the plane; ideally it's an implicit equation. 
Suppose we have a plane that goes through a point a and has normal n. (see whiteboard notes) for 
any 3D point p, the point lies on the plane if and only if (p - a) dot n equals zero. In fact, (p - a) dot n 
gives the signed distance between p and the plane, with positive distances on the same side as the 
normal and negative on the opposite side.

If we have a triangle a, b, cand we want this representation, we just need to calculate the normal. 
We've done this before: we used n = (b-a) x (c - a). For the point on the plane, we'll just use a (we 
could use any point).

To intersect a ray with a plane, we can plug a point on our parametric ray into the implicit equation 
for the plane and solve:



The only unknown here is ; that can be solved for, then plugged back into the ray equation to get the 
3D coordinates of the intersection. Now all we need is to determine whether this point is inside the 
triangle. Our point-in-triangle test from HW0/A0 is a good place to start thinking about this, but the 
fact that we're in 3D complicates things a little. If we're going to use a technique like that, we need to 
switch to some kind of 2D representation that's constrained to the plane that the triangle lies in. This 
brings to mind a general approach involving finding a 2D basis that spans the plane.

In fact, that's exactly what we're going to do: the approach here is called barycentric coordinates. 
This is probably going to seem weird, unnatural, and maybe unnecessary. But if we follow this 
through, we'll end up with a single calculation that gives us all of the following three things:

Where does the ray intersect the triangle's plane?
Does it intersect inside the triangle?
What is the weight assigned to each corner of the triangle when interpolating vertex data?

This final one is the kicker: remember that once we hit a point, we need to know surface properties 
like color, texture coordinates, normals, etc. On triangle meshes these are usually interpolated from 
vertex data stored at the triangle's corners. Expressing the position of the intersection on the plane in 
barycentric coordinates makes for a very elegant answer to "how much do I weight the value from 
each vertex?"

See whiteboard notes for the presentation of barycentric coordinates. Also see section 2.7 of the 
book. 

Super Cool Properties of Barycentric Coordinates  

, no matter where you are in the plane.

Each coordinate is the scaled signed distance to one of the triangle's edges. That is, the coordinate 
is 0 at the edge and 1 at the vertex opposite the edge. In particular:

 is the fraction of the distance from edge bc to vertex a
 is the fraction of the distance from edge ac to vertex b
 is the fraction of the distance from edge ab to vertex c

 is inside the triangle iff:

The coordinates are proportional to the areas of the subtriangles made by p inside the triangle, 
as a fraction of the full triangle's area, are proportional to the coordinates - see the picture on 
the slides.

These coordinates, if we find them, solve ray-triangle intersection using the "inside the triangle" 
property above. 



Moreover, they also solve the vertex-data interpolation problem! The fact that they sum to 1 and are 
proportional to subtriangle areas also makes them perfect for smoothly interpolating vertex ata. If we 
have some values (e.g., texture coordinates, color values, ...), call them , , , stored at each 
vertex, we can weight them by their barycentric coordinates to interpolate smoothly anywhere in the 
triangle:

Barycentric Ray-Triangle Intersection  

A point in the triangle's plane is , and a point on the ray is , so we can 
set these equal to find the intersection point:
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