Computer Graphics

Lecture 9
Specular Shading
Shadows

Announcements

. w@m 2 ideoc Lebore dass on Mondsy:
LIOA, L10B

¢ /H) H\xﬂ doe /Vlovxiccy
. /%2 J ljf\/\)l O\,LE/MO\/\J&W

- MUST |os e Rt aMﬂcfﬁW‘Hm\m /ZH
Sdort parivg Vo L yust have WMLW)W Tnesdoy

Diffuse (Lambertian) Shading

—

Lg = kgl max(0, 7 - £)

al]

[Foley et

For colored objects, kg4 is a 3-vector of R, G, and B reflectances.

Mirror Reflection

<\
N

What does a camera see when it looks at a mirror?

Mirror Reflection

N3
N

What does a camera see when it looks at a mirror?

v :

r
Vv
From last time:

r=—U+2U -1)n

X

Hint: A

How do we do this using the tools we already have?

Mirror Reflection

NI
N

What does a camera see when it looks at a mirror?

i :

A r
. \"}
From last time:
7=~ 4 2(5 - 1)
=
X
mirr ray.origin = x Hint: A/ small value to avoid hitting

the surface x lies on

mirr ray.direction = r ' /
color = traceray(scene, epsilon, Inf):
Frn Fimes

Recursion!?

traceray(ray, scene):

> t, rec = find intersection(ray, scene)

—, compute r, the reflection direction

~—)mirror

other cases, ...

Specular Reflection

e \What about non-mirror
shiny surfaces?

* They appear brighter
near "mirror" configuration //\\ <

 Phong reflection: specular I\M/
reflection is a function of

angle between r and v.

Phong Reflection

p
Phorg leiton g 3 v ive £(F 3)= Plosy)- 7

5 P
2 A e pabive e R . (B

Specular Reflection

e Blinn-Phong: specular reflection is a
function of angle between (half-way vector
between view and light) and (the normal).

N
//'\\

e h = bisector(v, I
n,h

e Reflected light proportional to . o V/
l

o his max(0, 7 - h)P

specular coefficient:
determines
specularity term

Computing h

Effect of p

CCCCCCCCC

Putting it all Together:
Blinn-Phong Reflection Model

Usually surfaces have both diffuse and specular
components, so we'll combine the two:

diffuse specular
light reflected reflection reflection

\ J specular exponent
[, A+ L (sharpness of specularity)
= kdI max (0, 7 - l)+ k Imax(() i h)P
diffuse coefﬂment Ilght Ilght half-vector
(surface brightness intensity direction between | and v
and color) specular coefficient
normal (strength [and color]

of specularity)

In code: function (s

What if there are multiple lights?

Light is additive - add them together:

lights
L= Y keImax(0,7 1) + koI max(0,7 - h;)?
i=1
In code:

function determine color(hitrec, ray, scene, ...):
color = black
for light in scene.lights:
color += shade light(light, hitrec, ...)

A disclaimer about point lights

~

intensity
here: I /r?

intensity
here: |

In A2, we're ignoring the factor of 1/r2, for ease of modeling.

Our images so far:

Point light

What's next?

Mirror-reflective surfaces

Shadows

Partially-Mirrored Surfaces

Notice the floor is
gray but also
mirror-reflective.

Materials store a
mirror coefficient:
fraction of light that is
reflected in a mirror-
like fashion

mirror / mirror-reflected "local" color
coefficient light (Blinn-Phong)

Shadows

Wrong Less Wrong

Shadows

How can we tell if a point is in shadow?

Eye

Shadows

How can we tell if a point is in shadow?

<~ Point light
KN

Eye

v Q Sphere

Vv |

Shadows

How can we tell if a point is in shadow?

Point light
Eye

v Sphere

X

Point is shadowed iff:

closest intersect(objs, Ray(:ki, @) , @, @ != nothing

Shadows

How can we tell if a point is in shadow?

v/ Point light
Problem: Fill in the table below. S >/'\?

Assume the intersection point is x.

Directi Point Sphere
Iigﬁt Z% light S

r.orig X ; X ?

r.dir Z 3 ,)27 oy

tmin 6(95 C)QS C/

tmax)W@m}’f 1 -

Point is shadowed iff:
closest intersect(objs, Ray(orig, dir), tmin, tmax) != nothing

function determine color(hitrec, ray, scene, ...):
color = black
for light in scene.lights:
if !is shadowed(scene, light, hitrec)
color += shade light(light, hitrec, ...)

Next time...
Let's talk about bunnies.

(but first: the weirdest coordinate system you've ever seen!)

If we want bunnies, we still need to implement

function ray intersect(ray, triangle, tmin, tmax):

Then, we can treat a triangle mesh as simply a list of triangles.

