
Computer Graphics
Lecture 7

Ray-Sphere Intersection

Announcements
• Don't forget to vote for your favorite artifact!

See my canvas announcement for details.

Ray Tracing: Pseudocode
for each pixel:
 generate a viewing ray for the pixel
 find the closest object it intersects
 determine the color of the object

Ray Tracing: Pseudocode
for each pixel:
 generate a viewing ray for the pixel
 find the closest object it intersects
 determine the color of the object

Reminder: Implicit vs Parametric

• Implicit equations: a property true at all points

• e.g., ax + by + c = 0, for a line

• Parametric equations: use a free parameter
variable to generate all points:

• e.g., r(t) = p + td, for a line

• Intersecting parametric with implicit is usually
cleanest.

Ray-Sphere Intuition:
Geometric

• How many times will can ray intersect a
sphere?

• For now, consider a unit sphere at the
origin.

• What's an implicit equation for a sphere? 
or: What's true of all points on a sphere?

Ray-Sphere Intuition:
Geometric

• How many times will can ray intersect a
sphere?

• An implicit equation for a sphere centered at
the origin: 
 
 

x2 + y2 + z2 = r

Geometric Intuition: LHS is the distance from the origin.

Ray-Sphere Intuition:
Geometric

• How many times will can ray intersect a
sphere?

• An implicit equation for a sphere centered at
the origin: 
 
 
or:

Geometric Intuition: LHS relates to a 3D point's  
signed squared distance from sphere's surface.

x2 + y2 + z2 = r

x2 + y2 + z2 = r2

x2 + y2 + z2 − r2 = 0

x2 + y2 + z2 − r2 = 0
https://www.google.com/search?client=firefox-b-1-

d&q=plot+x%5E2+%2B+y%5E2+-+1

Ray-Sphere Intuition:
Geometric

Ray-Sphere Intersection:
Algebraic

Whiteboard / notes.

Ray-Sphere intersection
• For now, assume unit sphere centered at

the origin. See 4.4.1 for general derivation.

If d is unit-length:

Geometric Intuition

Ray-Sphere: Code Sketch
function ray_intersect(ray, sphere, tmin, tmax):

• Use above math to find +/- t

• If none, return nothing

• Otherwise, return closest t that lies between
tmin and tmax

Ray-Scene: Code Sketch

find_intersection(ray, scene):
 closest_t = Inf
 closest_obj = nothing
 for obj in scene:
 t = ray_intersect(ray, obj, 1, closest_t)
 if obj != nothing:
 closest_t = t
 closest_obj = surf
 return closest_t, closest_obj

Brute force: check all objects.  
There are better ways - more on this later.

Ray Tracing: Code Sketch
scene = model_scene()
for each pixel (i,j):
 ray = get_view_ray(i, j)
 t, obj = find_intersection(ray, scene)
 if obj != nothing:
 canvas[i,j] = obj.color
 else:
 canvas[i,j] = scene.bgcolor

Next time...
scene = model_scene()
for each pixel (i,j):
 ray = get_view_ray(i, j)
 t, obj = find_intersection(ray, scene)
 if obj != nothing:
 canvas[i,j] = obj.color
 else:
 canvas[i,j] = scene.bgcolor

Let's work on this.

Problems

• Write ray intersection
code for axis-aligned
rectangles.

• Model an empty
Cornell box.

