Announcements

• CS Department TGIF - today at 4pm!
 Details: https://cs.wwu.edu/tgif-department-social

• HW1 is out - due Monday 1/25
 • #3 will help with A1

• A1 - if you don't have a partner yet, meet me in the In-Class Voice channel on Discord directly after class.
Announcements

- No class Monday - MLK Day
- I'll hold office hours Tuesday 10-11am to replace Monday's.
- Today's office hours will be cut short: 2:00-2:30.
- Tuesday's lecture - live, no videos
 - You may want to review Chapter 2.2 on quadratic equations.
Ray Tracing: Pseudocode

for each pixel:

generate a viewing ray for the pixel
find the closest object it intersects
determine the color of the object
A "canonical" perspective camera

- Eye is at the origin (0, 0, 0)
- Looking down the negative z axis
- Viewport is aligned with the xy plane
- \(\text{vh} = \text{vw} = 1 \)
- \(d = 1 \)
More General Cameras

\[u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2} \]
\[v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2} \right) \]

Let's break some assumptions!

- \(d = 1 \)
- \(vh = vw = 1 \)
- Eye is at the origin \((0, 0, 0)\)
- Looking down the **negative** z axis

Origin \((p) \): \((0, 0, 0)\)
Direction \((d) \): \((u, v, -1)\)
More General Cameras

\[u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2} \]
\[v = - \left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2} \right) \]

Let's break some assumptions!

- \(d = 1 \)
- \(vh = vw = 1 \)
- Eye is at the origin \((0, 0, 0)\)
- Looking down the negative z axis

Origin (\(p\)): \((0, 0, 0)\)
Direction (\(d\)): \((u, v, -d)\)
More General Cameras

\[
\begin{align*}
 u &= \frac{j}{W} - \frac{1}{2} \\
 v &= -\left(\frac{i}{H} - \frac{1}{2} \right)
\end{align*}
\]

Let's break some assumptions!

- \(d = 1 \)
- \(vh = vw = 1 \)
- Eye is at the origin \((0, 0, 0)\)
- Looking down the **negative** z axis
More General Cameras

\[u = \left(\frac{j - \frac{1}{2}}{W} - \frac{1}{2} \right) \times vw \]

\[v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2} \right) \times vh \]

Let's break some assumptions!

- \(d = 1 \)
- \(vh = vw = 1 \)
- Eye is at the origin (0, 0, 0)
- Looking down the negative z axis

Origin (\(p\)): (0, 0, 0)
Direction (\(d\)): (\(u, v, -1\))
More General Cameras

\[u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2} \]

\[v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2}\right) \]

Let's break some assumptions!

- \(d = 1 \)
- \(vh = vw = 1 \)
- Eye is at the origin \((0, 0, 0)\)
- Looking down the **negative** \(z \) axis

Origin \((\mathbf{p}) \): \((0, 0, 0)\)
Direction \((\mathbf{d}) \): \((u, v, -1)\)
More General Cameras

\[u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2} \]

\[v = - \left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2} \right) \]

Let's break some assumptions!

- \(d = 1 \)
- \(vh = vw = 1 \)
- Eye is at the origin (0, 0, 0)
- Looking down the negative z axis

Origin (p): \((e_x, e_y, e_z)\)
Direction (d): \((u, v, -1)\)
More General Cameras

\[u = \frac{j - \frac{1}{2}}{W} - \frac{1}{2} \]
\[v = -\left(\frac{i - \frac{1}{2}}{H} - \frac{1}{2} \right) \]

Let's break some assumptions!

- \(d = 1 \)
- \(vh = vw = 1 \)
- Eye is at the origin \((0, 0, 0)\)
- Looking down the negative \(z\) axis

Origin \((p)\): \((0, 0, 0)\)
Direction \((d)\): \((u, v, -1)\)
What if I want to point the camera somewhere else?

The key idea:
1. Find a **basis** where the camera *is* in canonical pose.
2. Change basis back to familiar x-y-z coordinates.

Pedantic side note:
- a **basis** is a set of vectors spanning a space.
- a **frame** is a basis plus an **origin** point.
What if I want to point the camera somewhere else?

The camera's pose is defined by a coordinate frame:
- \(e\) is the position of the eye
- \(u\) points right from \(e\)
- \(v\) points up from \(e\)
- \(w\) points back from \(e\)

Given this, we can generate a viewing ray as follows:

1. Turn \((i,j)\) into \(u, v\) instead of \(x, y\) (same math!)

2. Viewing ray in \((x, y, z)\) world is:
 - origin = eye
 - direction = \(u \cdot u + v \cdot v + -d \cdot w\)
Creating A Camera Basis

- Ask the modeler to specify e, u, v, w: makes the math simple, but not very intuitive modeling.

- Better: position a camera based on:
 - eye
 - view direction or point?
Creating A Camera Basis

- **eye** - position of eye
- **view** direction - direction camera is looking
- "**up**" vector - points "up" in the scene, but not necessarily in image space.
Creating a Basis
Perspective Cameras: IRL
Perspective Cameras: IR(ish)L

- Thin lens model
Classical Projections: Taxonomy

Graphical projections
Parallel projections
Orthographic
 Multiview
 First-angle
 Third-angle
 Plan
 Elevation
 Axonometric
 Isometric
 Dimetric
 Trimetric
Oblique
 Cabinet
 Cavalier
 Military
Perspective projections
 1-point
 2-point
 3-point
 Curvilinear
Planar Geometric Projections

Parallel
- Orthographic
 - Multiview Orthographic
 - Axonometric
- Oblique
- Perspective
 - One-point
 - Two-point
 - Three-point
Parallel Projections

- Parallel viewing rays
- Ray origins from pixels
- Camera origin (eye) is on the image plane

Orthographic: viewing rays are perpendicular to projection plane.

i.e., ray direction $\mathbf{d} = -\mathbf{w}$
Funky Parallel Projections

- Parallel viewing rays
- Ray origins from pixels
- Camera origin (eye) is on the image plane

Oblique parallel: viewing rays are *not* perpendicular to projection plane.

i.e., ray direction \mathbf{d} differs from $-\mathbf{w}$
Funky Perspective Projections

Shifted perspective: view direction **not** the same as the projection plane normal

...why do we want this?
Funky Perspective
Projections: IRL
Perspective distortions

- Lengths, length ratios

"foreshortening": object size is inversely related to depth
camera tilted up: converging vertical lines
lens shifted up: parallel vertical lines
Problems

• Create a camera basis given an at point, i.e., a 3D point that the camera should be looking at, instead of a view direction.

• Generate viewing rays for an orthographic projection, given a basis u, v, w.

• The "view volume" associated with a projection is the volume of 3D space that projects onto the image plane/viewport. Describe (informally) the shape of the view volume for an orthographic camera and a perspective camera.