or: I ordered an image and all I got was this grid of colored boxes
Announcements
Announcements

• Please join the Discord server before Friday's class. Invite link is on the Syllabus page of Canvas.
Announcements

- Please join the Discord server before Friday's class. Invite link is on the Syllabus page of Canvas.

- Set your nickname to First/preferredname Lastname
Announcements

• Please join the Discord server before Friday's class. Invite link is on the Syllabus page of Canvas.

 • Set your nickname to First/preferredname Lastname

 • Set your avatar to a photo of your face.
Announcements

• Please join the Discord server before Friday's class. Invite link is on the Syllabus page of Canvas.

 • Set your nickname to First/preferredname Lastname

 • Set your avatar to a photo of your face.

 • you can create a separate discord account for this class if you don't want to use your personal Discord account
Announcements

• Please join the Discord server before Friday's class. Invite link is on the Syllabus page of Canvas.

 • Set your nickname to First/preferredname Lastname

 • Set your avatar to a photo of your face.

 • you can create a separate discord account for this class if you don't want to use your personal Discord account

• HW0 and A0 out later today
Announcements

- Please join the Discord server before Friday's class. Invite link is on the Syllabus page of Canvas.
 - Set your nickname to First/preferredname Lastname
 - Set your avatar to a photo of your face.
 - you can create a separate discord account for this class if you don't want to use your personal Discord account
- HW0 and A0 out later today
 - Both due next Wednesday night
How do we graphics?

Let's design a simple graphics system.

The goal: draw a triangle on the screen.
How do we graphics?

Let's design a simple graphics system.

The goal: draw a triangle on the screen.

(why a triangle? more on this next time...)
How do we graphics?

Let's design a simple graphics system.

The goal: draw a triangle on the screen.

Pseudocode for graphics:

- Create a model of a scene
- Render an image of the scene

(why a triangle? more on this next time...)
Create a model of the scene

Convention: list vertices in **counterclockwise** order.
2D Triangles

How many ways can I write down this triangle?

- \(a \ b \ c \)
- \(b \ c \ a \)
- \(c \ a \ b \)

Convention: list vertices in **counterclockwise** order.
Render an image of the model
Render an image of the model

What is an image anyway?

• A photographic print?
• A photographic negative?
• The screen you're watching this on?
• Some numbers in RAM?
What is an image?

At its most formal and general: a function that maps positions in 2D to distributions of radiant energy

\[I : \mathbb{R}^2 \rightarrow \]
What about color?

- Humans are trichromatic, so we usually represent color as combinations of red, green, and blue.
How do we represent images?

- Raster formats - a 2D array of numbers
- Vector formats - mathematical description
How do we display images?
Old School Edition

Color Projector

Cathode Ray Tube
How do we display images?
Old School Edition

Color Projector

Cathode Ray Tube

Open CRT Monitor

Electron Guns

Selection of Shadow Mask

Magnified Phosphor-Dot Triangle

Screen
How do we display images?
Old School Edition

Color Projector

Cathode Ray Tube
How do we display images?
Old School Edition

Color Projector

Cathode Ray Tube

- Red
- Blue
- Green
- Yellow
- Cyan
- Magenta
- White
How do we display images? Nowadays Edition

Liquid Crystal Display

Digital Light Processing

Light Emitting Diode Display
How do we display images? Nowadays Edition

Liquid Crystal Display

Light Emitting Diode Display

Digital Light Processing

these are all examples of raster displays
Aside: It doesn't have to be this way...

XY Plotter

images: https://github.com/fogleman/ln
Raster Images

- Flexible
- Display-native
- Expensive
- Not ideal
- But darn useful
A model of the scene

\[
\begin{array}{c}
(0, 0)\\
(10, 10)\\
(30, 10)\\
(5, 40)
\end{array}
\]
A Raster Image of the Scene
Representing Raster Images: 2D Arrays of Numbers

- Bitmap (1 bit per pixel) \(I : \mathbb{R}^2 \rightarrow \{0,1\} \)
- Grayscale (usually 8 bpp) \(I : \mathbb{R}^2 \rightarrow [0, \text{MAX}] \) (e.g., 255)
- Color (usually 24 bpp) \(I : \mathbb{R}^2 \rightarrow [0, \text{MAX}] (R,G,B) \)
- Floating-point (gray or color) \(\mathbb{R}^2 \rightarrow \mathbb{R}^3 \)
 - Bad for display, but good for processing
 - Allows high dynamic range
 - For LDR, values range from 0-1 by convention
Raster Images: Storage

1 megapixel image - 1024x1024:

- Bitmap (1 bit per pixel) - 128 KB
- Grayscale (8 bpp) - 1 MB
- Color (24 bpp) - 3 MB
- Floating-point (color) - 12 MB
Aside: Performance

Fact: A 1 megapixel image has $1024 \times 1024 = 1048576 = 2^{20}$ pixels.
Aside: Performance

Fact: A 1 megapixel image has $1024 \times 1024 = 1048576 = 2^{20}$ pixels.

Consequence: creating a 1 megapixel image requires making 2^{20} decisions.
Aside: Performance

Fact: A 1 megapixel image has $1024 \times 1024 = 1048576 = 2^{20}$ pixels.

Consequence: creating a 1 megapixel image requires making 2^{20} decisions.

Implication: performance matters.
2D Arrays in Julia

• Image: A height-by-width array of pixels.

• For a color image, each pixel is 3 single-precision floats:

```julia
canvas = zeros(RGB{Float32}, height, width)
```

• Matrix-style 1-based indexing (row, column):
2D Arrays in Julia

• Image: A height-by-width array of pixels.

• For a color image, each pixel is 3 single-precision floats:

```julia
canvas = zeros(RGB{Float32}, height, width)
```

• Matrix-style 1-based indexing (row, column):

```julia
canvas[i, j] # is the i'th row, j'th column
```
Images in Julia: Demo

• Draw a rectangle on a canvas
• Demo colors
A model of the scene
Raster images are sampled

\[I : \mathbb{R}^2 \rightarrow \mathbb{R} \]
Representing Raster Images

What do pixels *mean*?
Raster Images: Coordinate Systems

\[
\begin{align*}
\text{Julia} & \quad \text{i} \\
\text{j} & \quad (i, j)
\end{align*}
\]
A0: Rendering *(Rasterizing)* a Triangle

Pseudocode:

\[
\text{for each pixel} \\
\text{if pixel is inside triangle} \\
\text{color pixel}
\]
Vectors
The Canonical Basis
Magnitude (length)
The vector between two points
The dot product
Point-in-Triangle