
Glass Container Modeling and
Rendering given a Glass Mold
Caelan Booker
Joe Fradley

March 8th, 2021

Glass Mold 3D Model

● Mold forms a cavity where molten glass is placed
and then filled with air to form a container

● Typically CAD software is used to design the outer
shell of the container, which is used to manufacture
the mold out of metal

● The 3D model is solid
● Standard CAD file format, such as STEP (ISO

10303-21)
● The resulting container has a number of features not

present in the 3D model which include:
○ Hollow with variable wall thickness
○ Transparent with variable refractive index
○ Different color glass
○ Potential defects due to manufacturing variables Rendered with FreeCAD

Motivation

● Give designers the ability to view rendering of
the final container

● Assist inspection equipment by generating a
“golden image” of what the given container
should look like at various stations

Hollow Meshes

● Actual bottles are hollow and wall thickness can
vary. These properties, along with the material being
used for the bottle, affect the way bottle interacts
with light.

● Just changing the thickness of the bottle alone
alters how light bends significantly.

● Naive solution:
When ray-bottle intersection occurs:
 Change ray direction based on material
 Travel fixed distance based on wall thickness
 Change direction back and continue travelling

● Doesn’t account for varying wall thickness
depending on where ray intercepts, and doesn’t
account for the possibility of the ray hitting the other
side of the bottle!

Other Approaches to Hollowing

● Constructive Geometry

○ Not directly responsible for hollowing, but can be paired with the
options below to represent the hollowed model in the world.

● Simple but inaccurate: Scale the original model

● Very complex: Use vertex data of original mesh to construct an
inner mesh

● In-between: Use a surface of revolution purpose built for the
profile of the mesh

● Other options: Just make the actual model itself out of a surface
of revolution

Constructive Geometry

● Instead of modifying the original mesh to
contain the wall data, we can also just use
constructive geometry and two separate
objects.

○ They don’t need to share the same type! Can
do mesh + surface of revolution.

● Ray trace through the first object and find the
intervals in which the ray is inside the object.
Then do the second object and find the
intervals for when the ray is in that object.

● From there, modify the intervals according to
the operation we want to perform.

Simple Method: Scaling

● Make a scaled down copy of the
original mesh and center it inside
the full sized version.

● Approach 1: Scale the entire mesh
by the same value, and center

○ Problem: Certain dimensions will
be more affected than others

● Approach 2: Individually scale
certain dimensions

○ Still not perfect

Complex Method: Building an Inner Mesh

● It’s possible to use the vertex data to construct a mesh
representing the inside walls of the structure.

● Move the vertices inwards and resolve conflicts to create new
inner triangles.

● Not quite that simple, lots of edge cases.

● The big 2 edge cases we noticed:

○ How do we drop vertices when they aren’t needed?

○ How do we determine when one inside wall has
overlapped with another?

Edge Cases

● These two edge cases are closely linked, but different
enough to warrant two examples. Both of these
conditions arise due to wall thickness.

● If the wall thickness is large enough, there are situations
where the adjacent faces of a surface might overlap and
cut that surface out of the final result.

● There can also be situations where
non-adjacent faces overlap.

● Both of these create “negative areas“
that should be solid instead of hollow.

● Still, this approach should be possible,
but very math intensive.

Negative
Area

Surfaces of Revolution

● Curves rotated around an axis in 3D space.

● Technically, the curve can be just about any function.

● But, we want to use Bezier curves! This gives us a lot of control
over the shape, and is fairly intuitive to use.

● But we did this in 2D. Can we do Bezier curves in 3D?

● Yes: Just need a new set of parameters for the z dimension.

○ Before, we would create two 4-vectors of all the x and y values of our
2D control points to generate two sets of coefficients, one for
producing the x values of the curve and one for the y values.

○ Just do this one more time with the z values of the control points.

Surfaces of Revolution (cont.)

● A Surface of Revolution is defined by 3 things:

○ A function representing the curve

■ In our case, 4 points to make a bezier curve with

○ An axis to rotate around

○ A base point for that axis

● From this, we can construct the coefficients we need for the
function f(u), and ray trace.

● Except, the ray tracing part needs a lot of math.
Let’s take a look at all that math!

A basic surface of revolution,
not using bezier curves.

Surfaces of Revolution (cont.)

● Let’s start by making the matrix A that will
produce points along the curve given a value
u between 0 and 1.

Surfaces of Revolution (cont.)

● Then let’s make our future work easier by
doing a translate and change of basis on the
result of f(u) such that our base point is the
origin and we are rotating around the y axis.

● By doing this, all we really need to do before
ray tracing is translating the origin of our ray,
and then performing a change of basis on the
ray origin and direction. Then we can raytrace
like normal.

Solving

Results!

Nicer Results!

Uses for Hollowing

● A surface of revolution can be used to hollow
out the inside of a mesh. Just need to choose
some curves that represent the shape we
want. Can use the outside of the bottle for a
good starting point.

● Can also just model the bottle itself using a
surface of revolution! Or other things, such as
a wine glass.

Reflection (Recap)

● The reflected angle is equal to the angle of incidence with respect to the
normal vector

● 𝛳i == 𝛳r

● Once 𝛳r is computed, continue tracing the ray from the intersection point
along that new direction

● Assignment “a2” used a “mirror coefficient” to compute what percentage of
the color came from the object color and that determined by the reflected
ray:

○ final_color = (mirror_coeff * reflected_color) + (1 - mirror_coeff) * local_color

Refraction (aka Transmission)

● Light changes direction when it travels from one
medium to another with a different refractive index

● This new direction can be computed with Snell’s
law, where 𝛼1 and n1 are the angle of incidence and
refractive index of the first medium, and 𝛼2 and n2 of
the second.

Reflection + Refraction Ratio: Fresnel Equations

● Transparent objects can both reflect and transmit light
● The amount of light reflected can be determined using

Fresnel Equations
● Using conservation of energy we can compute the amount

of light transmitted by subtracting what was reflected:
○ Rt = 1 - Rr

Fresnel Equations

● Light is made up of two waves perpendicular to each other, referred to as parallel and
perpendicular polarised light

● The amount of reflected light for each of these components(Rp = parallel, Rs = perpendicular)
can be computed with the following formulas:

● For most “natural light” applications, taking the average of these will give the overall effective
percent of light reflected:

https://en.wikipedia.org/wiki/Fresnel_equations

https://en.wikipedia.org/wiki/Fresnel_equations

Fresnel Equations

● Therefore the percentage of light refracted is:

● Implementation:
○ Trace a ray along the reflected ray
○ Trace a ray along the refracted ray

final_color = local_color + (reflected_color * Fr) + refracted_color * (1 - Fr)

Total internal reflection

● Can occur when light travels to a medium with a lower
refractive index, such as water to air.

● If the refracted angle is greater or equal to the “critical
angle” then total internal reflection occurs

● Equation for the critical angle given to refractive index
values:

https://en.wikipedia.org/wiki/Total_internal_reflection

https://en.wikipedia.org/wiki/Total_internal_reflection

Results

STEP File format

● STEP: "STandard for the Exchange of Product model data"
● ISO 10303
● Supports more complex surfaces then just simple mesh

support of OBJ files
● Plain text

https://knowledge.autodesk.com/support/alias-products/learn-explore/caas/CloudHelp/cloudhelp/2019/E
NU/Alias-ImportingExporting/files/GUID-A6F13C9D-9A69-4B72-A25C-55A144B8535F-htm.html

https://knowledge.autodesk.com/support/alias-products/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/Alias-ImportingExporting/files/GUID-A6F13C9D-9A69-4B72-A25C-55A144B8535F-htm.html
https://knowledge.autodesk.com/support/alias-products/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/Alias-ImportingExporting/files/GUID-A6F13C9D-9A69-4B72-A25C-55A144B8535F-htm.html

STEP File Sample

#7145=CARTESIAN_POINT('',(1.956590335226E-14,1.489368855047E2,
-3.822341141259E1));
#7146=CARTESIAN_POINT('',(2.481786542645E-14,1.341581379339E2,
-4.090473771141E1));
#7147=CARTESIAN_POINT('',(2.096156146846E-14,1.191385086726E2,
-4.079690759637E1));
#7148=CARTESIAN_POINT('',(2.021343062411E1,1.629613349067E2,-3.284607848130E1));
#7149=CARTESIAN_POINT('',(2.352263376723E1,1.489368855047E2,-3.822341141259E1));
#7150=CARTESIAN_POINT('',(2.517271821043E1,1.341581379339E2,-4.090473771141E1));
#7151=CARTESIAN_POINT('',(2.510635970889E1,1.191385086726E2,-4.079690759637E1));
#7152=CARTESIAN_POINT('',(3.405047605874E1,1.629613349067E2,-1.811112170376E1));
#7153=CARTESIAN_POINT('',(3.962498463641E1,1.489368855047E2,-2.107614936195E1));
#7154=CARTESIAN_POINT('',(4.240462960973E1,1.341581379339E2,-2.255461586909E1));
#7155=CARTESIAN_POINT('',(4.229284558801E1,1.191385086726E2,-2.249515901984E1));
#7156=CARTESIAN_POINT('',(3.278126424839E1,1.629613349067E2,2.062422332341E0));
#7157=CARTESIAN_POINT('',(3.814798624147E1,1.489368855047E2,2.400067860779E0));
#7158=CARTESIAN_POINT('',(4.082402155533E1,1.341581379339E2,2.568429732110E0));
#7159=CARTESIAN_POINT('',(4.071640421840E1,1.191385086726E2,2.561659023166E0));
#7160=(BOUNDED_SURFACE()B_SPLINE_SURFACE(3,3,((#7132,#7133,#7134,#7135),(#7136,
#7137,#7138,#7139),(#7140,#7141,#7142,#7143),(#7144,#7145,#7146,#7147),(#7148,
#7149,#7150,#7151),(#7152,#7153,#7154,#7155),(#7156,#7157,#7158,#7159)),
.UNSPECIFIED.,.F.,.F.,.F.)B_SPLINE_SURFACE_WITH_KNOTS((4,3,4),(4,4),(0.E0,1.E0,
2.E0),(0.E0,1.E0),.UNSPECIFIED.)GEOMETRIC_REPRESENTATION_ITEM()RATIONAL_B_SPLINE_SURFACE(((1.197664505200E0,1.183795474926E0,1.183795474926E0,1.197664505200E0),(
9.457933490053E-1,9.348410025564E-1,9.348410025564E-1,9.457933490053E-1),(
9.457933490053E-1,9.348410025564E-1,9.348410025564E-1,9.457933490053E-1),(
1.197664505200E0,1.183795474926E0,1.183795474926E0,1.197664505200E0),(
9.457933490053E-1,9.348410025564E-1,9.348410025564E-1,9.457933490053E-1),(
9.457933490053E-1,9.348410025564E-1,9.348410025564E-1,9.457933490053E-1),(
1.197664505200E0,1.183795474926E0,1.183795474926E0,1.197664505200E0)))REPRESENTATION_ITEM('')SURFACE());

