

Announcements

 Midterm due tonight.
One typo was fixed midday Saturday.
A couple clarifications are on Piazza.

* Final project feedback out by tonight.

e Grad lectures next week - planning to
schedule tonight.

Graphics Pipeline: Overview

you are here wmp

3D transformations; shading =s§» VERTEX PROCESSING

conversion of primitives to fragments

blending, compositing, shading ms» rFrRAGMEN

ROCESSING

user sees this ==

Recall: Wireframe Rendering

M = Mvp Mproj Mview Mmodel

for each line segment ai, bi
p = M ai;
q =M b;
draw line(p, q)

Recall: Wireframe Rendering

M = Mvp Mproj Mview Mmodel

for each line segment ai, bi
p = M ai;
q =M b;
draw line(p, q)

Recall: Wireframe Rendering

M = Mvp Mproj Mview Mmodel

for each line segment ai, bi

p =M ai;

q =M b;

draw_line(p, d4) | How do we do this?

Line Drawing

e This is a rasterization problem: given a

primitive (line segment), generate fragments
(pixels)

M = Myp Mproj Mview Mmodel

for each line segment ai, bi
p = M ai
q =M b;
draw line(p, q)

Line Drawing

e This is a rasterization problem: given a

primitive (line segment), generate fragments
(pixels)

M = Mvyp Mproj Mview Mmodel

for each line segment ai, bi

p =M aij

q =M b;

draw_line(p, q) | How do we do this?

Rasterizing lines - possible definition

* Define line as a
rectangle

* Specify by two
endpoints

* |deal image: black
inside, white outside

© 2014 Steve Marschner » 6

Rasterizing lines - possible definition

* Define line as a
rectangle

* Specify by two
endpoints

* |deal image: black
inside, white outside

© 2014 Steve Marschner » 6

Point sampling

* Approximate
rectangle by drawing
all pixels whose
centers fall within the
line

* Problem: sometimes
turns on adjacent
pixels

© 2014 Steve Marschner » 7

Point sampling

* Approximate
rectangle by drawing
all pixels whose
centers fall within the
line

* Problem: sometimes
turns on adjacent
pixels

© 2014 Steve Marschner » 7

=~

-
o

—
-

el e

Point sampling
In action

© 2014 Steve Marschner » 8

Bresenham lines (midpoint alg.)

Point sampling unit
width rectangle leads
to uneven line width

Define line width
parallel to pixel grid

That is, turn on the
single nearest pixel in
each column

Note that 45° lines
are now thinner

© 2014 Steve Marschner » 9

Bresenham lines (midpoint alg.)

Point sampling unit
width rectangle leads
to uneven line width

Define line width
parallel to pixel grid

That is, turn on the
single nearest pixel in
each column

Note that 45° lines
are now thinner

© 2014 Steve Marschner » 9

Bresenham lines (midpoint alg.)

Point sampling unit
width rectangle leads
to uneven line width

Define line width
parallel to pixel grid

That is, turn on the
single nearest pixel in
each column

Note that 45° lines
are now thinner

© 2014 Steve Marschner » 9

Midpoint algorithm
In action

_

© 2014 Steve Marschner * 10

=~

-
o

—
-

el e

Point sampling
In action

© 2014 Steve Marschner * ||

Algorithms for drawing lines

* line equation:
y=b+mx

* Simple algorithm:
evaluate line equation
per column

* W.lo.g. xo < xi;
O<m=<|

O —-= NN WA " O8N N 0O VW

¢ + 2 3 4 5 ¢ T 8 9 IO H R

y=191+037 x

© 2014 Steve Marschner ¢ 12

Algorithms for drawing lines

* line equation: ’
8
y=b+mx _
* Simple algorithm: 6
evaluate line equation °
4
per column
3
* W.lo.g xo < xi; 2
O<m=<| !
0
. 0 1 2 3 4 5 6 7 8 9 10 Il I2
Algorithm:

y=191+037 x

© 2014 Steve Marschner ¢ 12

Algorithms for drawing lines

* line equation: ’
8
y=b+mx _
* Simple algorithm: 6
evaluate line equation °
4
per column
3
* W.lo.g xo < xi; 2
O<m=<| !
0
. 0 1 2 3 4 5 6 7 8 9 10 Il I2
Algorithm:

// compute m, b

for x = ceil(x0) to floor(x1l)
y=b+m*x
// Bx: what goes here?

y=191+037 x

© 2014 Steve Marschner * 13

Algorithms for drawing lines

* line equation: ’
8
y=b+mx _
* Simple algorithm: 6
evaluate line equation °
4
per column
3
* W.lo.g xo < xi; 2
O<m=<| !
0
. 0 1 2 3 4 5 6 7 8 9 10 Il I2
Algorithm:

// compute m, b

for x = ceil(x0) to floor(x1l)
y=b+m*x
draw(x, round(y))

y=191+037 x

© 2014 Steve Marschner ¢ 14

Optimizing Line Drawing

Can we take stuff out of
the inner loop?

EXxercise: optimize this function fast_line(pl, pR):
// compute m, b

function slow_line(pl, pR):
// compute m, b
for x = ceil(x0) to floor(x1l)
y=b+m*x .
draw(x, round(y)) for x = ceil(x0) to floor(x1l)

draw(x, round(y))

© 2014 Steve Marschner * 15

Optimizing Line Drawing Even More

* Rounding is slow too

* At each pixel the only
options are E and NE

* Track distance to line:
—d=m(x+1)+b-y
— d > 0.5 decides

between E and NE

9
8
7
6
5
4
3
2
I
0

0

2 3 % 5 6 7T 8 9 O H R

© 2014 Steve Marschner ¢ 16

Optimizing Line Drawing Even More

e d=mkx+1l)+b—-y
* Only need to update

d for integer steps in
x and y

e Do that with addition

* Known as
“DDA” (digital
differential analyzer)

9
8
7
6
5
4
3
2
I
0

¢ + 2 3 4 5 ¢ T 8 9 IO H R

© 2014 Steve Marschner * 17

Linear interpolation

* We often attach attributes to vertices
— e.g. computed diffuse color of a hair being drawn using lines
— want color to vary smoothly along a chain of line segments

© 2014 Steve Marschner * 18

Linear interpolation

* We often attach attributes to vertices
— e.g. computed diffuse color of a hair being drawn using lines
— want color to vary smoothly along a chain of line segments

-

© 2014 Steve Marschner * 18

Linear interpolation

* We often attach attributes to vertices
— e.g. computed diffuse color of a hair being drawn using lines
— want color to vary smoothly along a chain of line segments

* Same machinery as
we used for y works r:.-
v
for other values!

© 2014 Steve Marschner * 18

Rasterizing triangles

* |nput:
— three 2D points (the triangle’s vertices in pixel space)
* (o, yo); (x1,51); (x2, y2)
— parameter values at each vertex
®* doos ..., qon, 410y -..5 glns 20, ..., 42n
* Output:a list of fragments, each with
— the integer pixel coordinates (x, y)
— interpolated parameter values qo, ..., gn

© 2014 Steve Marschner * 19

Rasterizing triangles

| L | - - . | ' & -) | L | . .
o o) ¥ o (‘Xz’ y 2) (8] @ L e & ¢ o

[
Summary o (920 920)

: : | vertex —

| evaluation of linear e Tadlze | =) (
fupctlons on pixel |« [trabhart - ERE
grid v [s [] ALY

[5]
@
®

2 functions definedby = = =~ e[]
parameter values il il Bl e JEE
at vertices

xpy)

: (94011 Gin)
3 using extra 1IF1NiE

parameters oo : AL
to determine o] £
fragment set | [& | o | o

(900 -+ 90n)

© 2014 Steve Marschner * 20

Incremental linear evaluation

* A linear (affine, really) function on the plane is:
q(z,y) = czT + cyy + ck

* Linear functions are efficient to evaluate on a grid:

gz +1,y) =cp(z+ 1)+ cyy + cx = q(x,y) + co
gz, y+ 1) =cpz+cy(y+ 1)+ cx = q(z,y) + ¢,

© 2014 Steve Marschner * 21

Pixel-walk (Pineda) rasterization

* Conservatively visit a
superset of the pixels
you want

* Interpolate linear
functions

— barycentric coords
(determines when to
emit a fragment)

— colors
— normals

— whatever else!

© 2014 Steve Marschner * 22

