Computer Graphics

Lecture 23
Rasterization:
Lines and Triangles
Announcements

• Midterm due tonight.
 One typo was fixed midday Saturday.
 A couple clarifications are on Piazza.

• Final project feedback out by tonight.

• Grad lectures next week - planning to schedule tonight.
Graphics Pipeline: Overview

- Application
- Command Stream
- Vertex Processing
- Transformed Geometry
- Rasterization
- Fragments
- Fragment Processing
- Framebuffer Image
- Display

3D transformations; shading

Conversion of primitives to fragments

Blending, compositing, shading

You are here

User sees this
Recall: Wireframe Rendering

\[M = M_{vp} M_{proj} M_{view} M_{model} \]

for each line segment \(a_i, b_i \)

\[p = M a_i \]
\[q = M b_i \]

\[\text{draw_line}(p, q) \]
Recall: Wireframe Rendering

\[M = M_{vp} M_{proj} M_{view} M_{model} \]

for each line segment \(a_i, b_i \)

\[p = M a_i \]
\[q = M b_i \]
\[\text{draw_line}(p, q) \]
Recall: Wireframe Rendering

\[M = M_{vp} M_{proj} M_{view} M_{model} \]

for each line segment \(a_i, b_i \)

\[p = M a_i \]
\[q = M b_i \]

\[
\text{draw_line}(p, q)
\]

How do we do this?
Line Drawing

• This is a rasterization problem: given a primitive (line segment), generate fragments (pixels)

\[M = M_{vp} M_{proj} M_{view} M_{model} \]

for each line segment \(a_i, b_i \)

\[p = M a_i \]
\[q = M b_i \]

\texttt{draw_line}(p, q)
Line Drawing

• This is a rasterization problem: given a primitive (line segment), generate fragments (pixels)

\[
M = M_{vp} M_{proj} M_{view} M_{model}
\]

for each line segment \(a_i, b_i \)

\[
p = M a_i
\]

\[
q = M b_i
\]

\[
draw_line(p, q)
\] How do we do this?
Rasterizing lines - possible definition

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside
Rasterizing lines - possible definition

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside
Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels
Point sampling

• Approximate rectangle by drawing all pixels whose centers fall within the line
• Problem: sometimes turns on adjacent pixels
Point sampling in action
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Midpoint algorithm in action
Point sampling in action
Algorithms for drawing lines

- line equation:
 \[y = b + mx \]
- Simple algorithm:
 evaluate line equation per column
- W.l.o.g.
 \[x_0 < x_1; \quad 0 \leq m \leq 1 \]

\[y = 1.91 + 0.37x \]
Algorithms for drawing lines

- line equation: $y = b + m x$
- Simple algorithm: evaluate line equation per column
- W.l.o.g. $x_0 < x_1$; $0 \leq m \leq 1$

Algorithm:

$$y = 1.91 + 0.37 \times$$
Algorithms for drawing lines

- line equation: \(y = b + m \times x \)
- Simple algorithm: evaluate line equation per column
- W.l.o.g. \(x_0 < x_1 \);
 \(0 \leq m \leq 1 \)

Algorithm:

```plaintext
// compute m, b
for x = ceil(x0) to floor(x1)
    y = b + m * x

// Ex: what goes here?
```

\[y = 1.91 + 0.37 \times x \]
Algorithms for drawing lines

- line equation:
 \[y = b + m \cdot x \]
- Simple algorithm:
 evaluate line equation per column
- W.l.o.g. \(x_0 < x_1 \);
 \(0 \leq m \leq 1 \)

Algorithm:

\[
\text{// compute } m, b \\
\text{for } x = \text{ceil}(x_0) \text{ to floor}(x_1) \\
\quad y = b + m \cdot x \\
\quad \text{draw}(x, \text{round}(y))
\]
Optimizing Line Drawing

Can we take stuff out of the inner loop?

Exercise: optimize this

```plaintext
function slow_line(p1, p2):
    // compute m, b
    for x = ceil(x0) to floor(x1)
        y = b + m*x
    draw(x, round(y))
```

```plaintext
function fast_line(p1, p2):
    // compute m, b
    for x = ceil(x0) to floor(x1)
        y = b + m*x
    draw(x, round(y))
```
Optimizing Line Drawing Even More

- Rounding is slow too
- At each pixel the only options are E and NE
- Track distance to line:
 - $d = m(x + 1) + b - y$
 - $d > 0.5$ decides between E and NE
Optimizing Line Drawing Even More

- \(d = m(x + 1) + b - y\)
- Only need to update \(d\) for integer steps in \(x\) and \(y\)
- Do that with addition
- Known as “DDA” (digital differential analyzer)
Linear interpolation

• We often attach attributes to vertices
 – e.g. computed diffuse color of a hair being drawn using lines
 – want color to vary smoothly along a chain of line segments
Linear interpolation

- We often attach attributes to vertices
 - e.g. computed diffuse color of a hair being drawn using lines
 - want color to vary smoothly along a chain of line segments
Linear interpolation

• We often attach attributes to vertices
 – e.g. computed diffuse color of a hair being drawn using lines
 – want color to vary smoothly along a chain of line segments

• Same machinery as we used for y works for other values!
Rasterizing triangles

• Input:
 – three 2D points (the triangle’s vertices in pixel space)
 • \((x_0, y_0); (x_1, y_1); (x_2, y_2)\)
 – parameter values at each vertex
 • \(q_{00}, \ldots, q_{0n}; q_{10}, \ldots, q_{1n}; q_{20}, \ldots, q_{2n}\)

• Output: a list of fragments, each with
 – the integer pixel coordinates \((x, y)\)
 – interpolated parameter values \(q_0, \ldots, q_n\)
Rasterizing triangles

- Summary
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set
Incremental linear evaluation

• A linear (affine, really) function on the plane is:
 \[q(x, y) = c_x x + c_y y + c_k \]

• Linear functions are efficient to evaluate on a grid:
 \[q(x + 1, y) = c_x (x + 1) + c_y y + c_k = q(x, y) + c_x \]
 \[q(x, y + 1) = c_x x + c_y (y + 1) + c_k = q(x, y) + c_y \]
Pixel-walk (Pineda) rasterization

• Conservatively visit a superset of the pixels you want
• Interpolate linear functions
 – barycentric coords (determines when to emit a fragment)
 – colors
 – normals
 – whatever else!