
Lecture/Lab 20 - WebGL and GLSL - Lab

Overview

By the end of this lab, you will have prodded at some WebGL code a little bit, and written a tiny bit of
your own. Hopefully along the way, you'll get a feel for how attributes, uniforms, varyings, and
buffers interact with shaders.

Grab the skeleton code from the course website, linked from today's lecture in the schedule table.

Open up glDemo.js in an editor of your choice. In glDemo.js , there are four sections:

1. WebGL Mechanics Helper Functions
2. Source Code for Shaders
3. Triangle Code
4. GLDemo - main code

I'd like you to scroll past the first section as quickly as possible. Don't look! Okay you can look,
but the stuff there is details that I'd rather you not focus on first. You will be writing code in only the
second and third sections, which hides details by using the helpers from the first section.

Open hellogl.html in a browser of your choice. I've tested this in Firefox, but it should work in any
modern browser. You should see a white canvas on a white background. Actually, you're looking at a
white triangle on a white canvas on a white background! Your first task involving code changes will be
to change the triangle color so it's visible on the white background.

Tasks

 -1. I suggest opening the developer console of your browser of choice right now, so you will see any
errors that come up in the console. In Firefox, you can access it via the menu at the top-right > Web
Developer > Web Console. The A3 handout links to instructions for other browsers.

0. Starting at the glDemo function, read through the code in the GLDEMO - main code and
TRIANGLE CODE sections in the following order:

1. glDemo is called first to set things up; it in turn calls the Triangle 's constructor
2. Read the Triangle constructor; don't dive into the helper functions it calls
3. Once things are set up, the glDemo.prototype.render function is called to draw things to

the screen. The main render function calls the Triangle 's render function.
4. Read the Triangle.prototype.render function, which draws the geometry to the screen.

Again, don't dive into the helpers yet.

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_20w/lectures/L20/L20_skeleton.zip
https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_20w/a3/#lets-talk-about-javascript1

1. In the fragment shader source code, set the fragment color to black instead of white so the
triangle actually shows up on the canvas. Remember that the fourth color channel represents
transparency, with 0 being transparent and 1 being opaque.

2. Now we'll add a uniform that allows us to transform the triangle's geometry.

1. Uncomment the two lines indicated in Triangle.prototype.render to set the matrix
javasript variable to the shaders as a uniform called Matrix .

2. Add this line at the beginning of the vertex shader source code to declare the uniform:

3. Change the main function so it sets the vertex's position (gl_Position) to the product of
Matrix with the Position attribute. At this point you should be able to refresh the page
and see the triangle enlarged by a factor of 1.5, with the right-most corner of the triangle
cut off a bit.

4. Adjust the matrix's entries in glDemo.prototype.render to shift the triangle to the left a
bit so it fits in the canvas again.

3. Make the triangle multi-colored. We'll do this by (1) specifying a Color attribute at each vertex;
(2) passing this into a varying parameter so it gets interpolated and passed into the fragment
shader; and (3) setting the color in the fragment shader. Here are the steps you should take:

1. Create a VBO for color data in the Triangle constructor function. Use the code above that
creates the positionVbo above as a template.

2. Modify the Triangle 's render function to bind the VBO you just created, then link the
Color attribute to the VBO. Use the code directly above, which does this same thing for
the Position attribute, as a template. Note that you need to bind the color VBO, but you
don't need to re-bind the IBO.

3. In the vertex shader source code, add a delaration for the Color attribute underneath the
delcaration for the Position attribute.

4. Also in the vertex shader source code (still outside the main method), add a declaration for
a varying parameter called vColor :

5. In the vertex shader's main function, set the vColor varying parameter to the value of the
Color attribute.

6. Declare vColor in the fragment shader, just as you did in the vertex shader. Although the
name is the same, remember that the value given to the fragment shader has been
interpolated from the nearby vertices so it smoothly varies across the triangle.

7. Finally, assign the varying's value to gl_FragColor . Refresh the page and you should see a
much more colorful triangle!

uniform mat4 Matrix;1

varying vec3 vColor;1

4. If you have extra time: The glDemo render function is actually called repeatedly. This means
that if you change the values in Matrix over time, you can animate the triangle. Use javascript's
Datetime.now() to make change the matrix over time to make the triangle change shape or
pose over time. Can you also change the data in the buffers (e.g., the color VBO) over time?

	Lecture/Lab 20 - WebGL and GLSL - Lab
	Overview
	Tasks

