e

Computer Graphics

Lecture/Lab 20
Introducing WebGL

Announcements

e Some links added to the Final Project Proposal
writeup on Canvas - more topic ideas, inspiration,
resources for learning about what's out there.

e HW1 grading probably done today

e Reminders:
* Project proposals due Friday

* Takehome midterm out Friday

A2 Artifact Results

3rd Place (tie): Sam Burgess

rd Place (tie):
Martin Smith

f o P DF RS

L Lt S

gy VNI e W
ol A, et

pa ¥t I M '

. v : . 8 /2 -

R 4 =

CHT

~ g

AR
T "y,
SRS TR Ny

Eric Slyman

1st plac

Graphics Pipeline: Overview

you are here wmp

3D transformations; shading =s§» VERTEX PROCESSING

conversion of primitives to pixels

blending, compositing, shading ms» rFrRAGMEN

ROCESSING

user sees this ==

Last time

you are here mmp-

3D transformations; shading s VERTEX PROCESSING

Backface culling
Clipping

conversion of primitives to pixels mmp-

blending, compositing, shading s FRAGMEN

ROCESSING Z buffering

user sees this

Back face culling

* For closed shapes you will never see the inside
—therefore only draw surfaces that face the camera
—implement by checkingn -v > 0

/ -
\

The z buffer

['1e 30 As|04]

L) 1 O ‘.-.~—...])
w|lo|lo|lo|o|o|o|lof |w|o
wiw|o|o|o|o|o|of |v|w
wiw|w|lo|o|o|o|o| |v|w
wivlwliw|o|lo|lo|o| ||
wiwvlwlv|v|o|lo|o| |v|w
wioviwlwv|v|wv|o|lo| |v|w
wiwvivjwv|wv|iw|o| |v|w

I I
)
ol HYo)
wiw|w
Wiw|w|w
Wiw|iw|w|w
Wi wlw|w|w
wWiwviwviv|wv|w

4 +
o|o|o|o|o|o|o|o| |o|lo|o|lo|o|o|o|o
o|lo|o|o|o|o|o|o| |w|o|o|lo|o|o|o|o
o|lo|o|o|o|o|o|o| |wlw]|o|o|lo|lo|o|o
o|lo|o|lo|o|o|o|o| |v|w|w|o|o|o|o|o
o|lo|o|lo|o|o|o|o| |lv|w|lwvw|wvw|o|o|o|o
o|lo|o|o|o|o|o|o| |lu|wvw|v|lv|lwv|o|o|o
o|lo|o|o|o|o|o|lo| |v|lvwiv|w|lw|wv|o|o
o|lo|o|lo|o|lo|o|o| |lv|viv]|wv|wv|lwv|w|o

— another example of a memory-intensive brute force
approach that works and has become the standard

— store z as an integer for speed and memory efficiency

(at the expense of precision!)

© 2014 Steve Marschner *

OpenGL: Nowadays

OpenGL: Nowadays

e Send buffers full of data to GPU

OpenGL: Nowadays

e Send buffers full of data to GPU

e Tell GL how to interpret them (triangles, line segments, ...)

OpenGL: Nowadays

e Send buffers full of data to GPU
e Tell GL how to interpret them (triangles, line segments, ...)

 GL executes custom-written vertex shader program on each
vertex (to determine is location in clip space)

OpenGL: Nowadays

e Send buffers full of data to GPU
e Tell GL how to interpret them (triangles, line segments, ...)

 GL executes custom-written vertex shader program on each

vertex (to determine is location in clip space) = normalized device
coordinates

OpenGL: Nowadays

e Send buffers full of data to GPU
e Tell GL how to interpret them (triangles, line segments, ...)

 GL executes custom-written vertex shader program on each

vertex (to determine is location in clip space) = normalized device
coordinates

 GL rasterizes primitives into pixel-shaped fragments

OpenGL: Nowadays

e Send buffers full of data to GPU
e Tell GL how to interpret them (triangles, line segments, ...)

 GL executes custom-written vertex shader program on each

vertex (to determine is location in clip space) = normalized device
coordinates

 GL rasterizes primitives into pixel-shaped fragments

* GL executes custom-written fragment shader program on
each fragment to determine its color.

OpenGL: Nowadays

e Send buffers full of data to GPU
e Tell GL how to interpret them (triangles, line segments, ...)

 GL executes custom-written vertex shader program on each

vertex (to determine is location in clip space) = normalized device
coordinates

 GL rasterizes primitives into pixel-shaped fragments

* GL executes custom-written fragment shader program on
each fragment to determine its color.

 GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

Pipeline for minimal operation

* Vertex stage (input: position / vtx; color / tri)
— transform position (object to screen space)

— pass through color

* Rasterizer
— pass through color

* Fragment stage (output: color)

— write to color planes

© 2014 Steve Marschner * |3

Result of minimal pipeline

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480 20w/pipeline _demo/

© 2014 Steve Marschner * 14

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_20w/pipeline_demo/

OpenGL: Your job, conceptually

e Send buffers full of data to GPU up front.
e Tell GL how to interpret them (triangles, ...)

 GL executes custom-written vertex shader program on each

vertex (to determine is location in clip space) = normalized device
coordinates

 GL rasterizes primitives into pixel-shaped fragments

* Execute custom-written fragment shader program on each
fragment to determine its color.

 GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

OpenGL: Your job, conceptually

(send geometry)
e [Send buffers full of data to GPU up front.

e [Tell GL how to interpret them (triangles, ...)

 GL executes custom-written vertex shader program on each

vertex (to determine is location in clip space) = normalized device
coordinates

e GL rasterizes primitives into pixel-shaped fragments

* Execute custom-written fragment shader program on each
fragment to determine its color.

 GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

OpenGL: Your job, conceptually

(send geometry)

e |[Send buffers full of data to GPU up front.

e [Tell GL how to interpret them (triangles, ...)

(write vertex shader]

* GL executes custom-written‘vertex shader program |on each

vertex (to determine is location in clip space) = normalized device

coordinates

e GL rasterizes primitives into pixel-shaped fragments

* Execute custom-written fragment shader program on each

fragment to determine its color.

* GL writes fragment colors to framebuffer pixels; neat things

appear on your screen.

OpenGL: Your job, conceptually

(send geometry)

e |[Send buffers full of data to GPU up front.

e [Tell GL how to interpret them (triangles, ...)

(write vertex shader]

* GL executes custom-written‘vertex shader program |on each

vertex (to determine is location in clip space) = normalized device

coordinates

e GL rasterizes primitives into pixel-shaped fragments

(write fragment shader)

* Execute custom-written|{fragment shader program pn each

fragment to determine its color.

* GL writes fragment colors to framebuffer pixels; neat things

appear on your screen.

Terminology, so far

e Clipping
e Rasterization

* |nterpolation

* Fragment

e Shader

WebGL: Your Jobs

e Send geometry
e \Write a vertex shader

* Write a fragment shader

WebGL: Your Jobs

e Send geometry by calling gl functions
e Write a vertex shader

* Write a fragment shader

WebGL: Your Jobs

 Send geometry by calling g1 functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'@de language

WebGL Data Plumbing: Overview

application

triangles l lll attributes

vertex program

uniform
variables

rasterizer

l l varying parameters

/ l l varying parameters

fragment program

depth l l color

framebuffer See also: today's
lecture notes

WebGL: Hello, Triangle!

 Send geometry by calling g1 functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'@de language

WebGL: Hello, Triangle!

 Send geometry by calling g1 functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'@de language

WebGL: Hello, Triangle!

 Send geometry by calling g1 functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'@de language

A first pass at the lab code...

WebGL: Hello, Triangle!

 Send geometry by calling g1 functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'@de language

okay so we saw some unfamiliar words in there:

buffer
attribute

WebGL: Hello, Triangle!

 Send geometry by calling g1 functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'@de language

okay so we saw some unfamiliar words in there:

buffer
attribute

WebGL: Hello, Triangle!

 Send geometry by calling g1 functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'@de language

A first pass at the lab code...

okay so we saw some unfamiliar words in there:

buffer
attribute

WebGL Data Plumbing: Overview

application

triangles l lll attributes

vertex program

uniform
variables

rasterizer

l l varying parameters

/ l l varying parameters

fragment program

depth l l color

framebuffer See also: today's
lecture notes

WebGL Data Plumbing

application

triangles l ll
vertex program
‘ /! [l

See also: today's
lecture notes

WebGL Data Plumbing

sent in vertex buffers
application

triangles l ll

vertex program

/! [

See also: today's
lecture notes

WebGL Data Plumbing

sent in an index buffer

friangles l l l

/!

sent in vertex buffers
application

attributes

vertex program

See also: today's
lecture notes

WebGL: Hello, Triangle!

 Send geometry by calling g1 functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'@de language

WebGL: Hello, Triangle!

 Send geometry by calling g1 functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'@de language

WebGL: Hello, Triangle!

 Send geometry by calling g1 functions

* Write a vertex shader in GLSL, the GL

e Write a fragment shader S"'@de language

A first look at the shader code...

Shader Responsibilities

The vertex shader's job is to:

- assign a value to gl Position,
which specifies the vertex's position

- assign values to any varying parameters needed later

The fragment shader's job is to:

- assign a value to gl_FragColor,
which specifies the fragment's color

GLSL - GL Shader Language

e A C-like mini-language

e Basic program looks like: // some declarations

volid main() {
// main program

}

e Built-in types for small vectors/matrices
(e.g., vec3, mat4)

Task 1: Turn the triangle black

e Change the fragment shader's source code
to set the triangle color to black instead of
white.

e Note: colors are vec4s: the 4th channel is
transparency ("alpha”):

e 0.0 is fully transparent, 1.0 is fully opaque

WebGL Data Plumbing

application

triangles l ll
vertex program
‘ /! [l

See also: today's
lecture notes

WebGL Data Plumbing

sent in vertex buffers
application

triangles l ll

vertex program

/! [

See also: today's
lecture notes

WebGL Data Plumbing

sent in an index buffer

friangles l l l

/!

sent in vertex buffers
application

attributes

vertex program

See also: today's
lecture notes

WebGL Data Plumbing

application

triangles l lll attributes

vertex program
I 1

uniform
variables

See also: today's
lecture notes

GLSL - GL Shader Language

e Built-in types for small vectors/matrices
(e.g., vec3, mat4)

 Multiplication on the above types does
matrix multiplication:

// GL matrices are in column-major order

mat2 A = mat2(1.0,2.0,3.0,4.0);
vec2 x = vec2(1.0, 0.0);
vec2 a = A * x; // a= (1,2)

Task 2: Add a uniform

e Add a uniform variable called Matrix
containing a 4x4 matrix

e In the vertex shader, multiply the Position
attribute of the vertex by the Matrix to
move the triangle vertices.

Terminology: data plumbing

application

triangles l lll attributes

vertex program

uniform
variables

rasterizer

l | varying parameters

/ l varying parameters

fragment program

depth l l color

framebuffer See also: today's
lecture notes

GLSL - GL Shader Language

e varyings are declared in both the Vertex
shader and in the Fragment shader.

* The vertex shader sets their values for each vertex,
then the rasterizer interpolates their values for each
fragment and passes to the fragment shader.

e By convention, varying names are usually
chosen to begin with v, such as vColor or
vNormal

Task 3: Add a varying

e Set up a varying parameter to set the
color at each vertex

e Use the interpolated values in the fragment
shader to set each fragment's color.

