Computer Graphics

Lecture 18
Hierarchical Transformations
The Graphics Pipeline

Announcements

e No more problems will be added to HW?2.

Transformation Hierarchies
AKA Scene Graphs

* Represent a drawing (“scene’”) as a list of objects
* Transform for each object

— can use minimal primitives: ellipse is transformed circle
— transform applies to points of object

Example

* Can represent drawing with flat list
— but editing operations require updating many transforms

j Ly Tz'. T3°- T4°. TS°. Ts°. T7°O Ta'. T9°. T|0°- Tn'. T|2°. T|3°- T|4°. TIS'. T|6°. T|7°. T|e°. A

BB

Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner * 4

Example

* Can represent drawing with flat list
— but editing operations require updating many transforms

00 - RO 0l

Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner * 4

Groups of objects

* Treat a set of objects as one
* Introduce new object type: group

— contains list of references to member objects
* This makes the model into a tree

— interior nodes = groups
— leaf nodes = objects
— edges = membership of object in group

Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner * 5

Demo: Drawing in PowerPoint

Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner * 6

Example

* Add group as a new object type
— lets the data structure reflect the drawing structure
— enables high-level editing by changing just one node

Te T20. Tae w Tge = TCo A 4 Tpe *=

ol (e — ‘
T7°O Ts°. T9°. T|o°. T|9'. Tzo'.
IT||°. T|2°. TIJ'.I IT2|°. 722°. Tza'.l . . .

T|4°. T|5°. T24°. Tzs°-
Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner » 7

Example

* Add group as a new object type
— lets the data structure reflect the drawing structure
— enables high-level editing by changing just one node

T|o Tzo. - TBO A 4 Tco A 4 TDO A 4

e o | e T ‘
T7°O Ts°. T9°. T|o°. T|9'. Tzo'.

Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner » 7

IT||°. T|2°. TIJ'.I IT2|°. 722°. Tza'.l
T|4°. T|5°. T24°. Tzs°-

Groups of objects

* Treat a set of objects as one
* Introduce new object type: group

— contains list of references to member objects
* This makes the model into a tree

— interior nodes = groups
— leaf nodes = objects
— edges = membership of object in group

Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner * 8

The Scene Graph (tree)

* A name given to various kinds of graph structures (nodes
connected together) used to represent scenes

* Simplest form: tree
— just saw this
— every node has one parent

— leaf nodes are identified
with objects in the scene

Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner * 9

Instances

* Simple idea: allow an object to be a member of more than
one group at once

— transform different in each case
— leads to linked copies
— single editing operation changes all instances

Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner ¢ 10

Example: Whiteboard

Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner * ||

Questions?

Questions?

 That wraps up our discussion of transformations.

e \We have an (almost) fully-featured wireframe
rendering framework.

* We haven't implemented clipping yet for geometry outside the
view volume.

* Next up:
* more realism: occlusion, shading

* speed: using hardware

Graphics Pipeline: Overview

you are here wmp

3D transformations; shading =s§» VERTEX PROCESSING

conversion of primitives to pixels

blending, compositing, shading ms» rFrRAGMEN

ROCESSING

user sees this ==

Application sends geometric
primitives to renderer (e.g., to GPU) —

Vertices are transformed to image

— APPL

space (we've done this part!)

Primitives are converted into pixel-

— VERTEX PROCESSING

shaped "fragments”; values are
interpolated across primitives.

Fragments are shaded, blended,
and composited to determine
pixel colors.

» RASTE

FRAGMEN ROCESSING

Pixel colors written to the _
framebuffer appear on the screen.

Command Stream

Application sends geometric
primitives to renderer (e.g., to GPU) —

—

What primitives?

* Points

VERTEX PROCESSING

* Line segments

— and chains of connected line segments
* Triangles
And that’s all!

— Curves! Approximate them with chains of line
segments

FRAGMENT PROCESSING
— Polygons? Break them up into triangles

— Curved surfaces! Approximate them with
triangles

* Trend over the decades: toward minimal primitives

— simple, uniform, repetitive: good for parallelism

Vertex Processing

APPL

TION

Vertices are transformed to image
space (we've done this part!)

— VERTEX PROCESSING

object space camera space Y [—m—m———
©C |
(@ By D ——
n -
C | «————
S| ~—
o ~—
S | —

modeling \ ceflmerat. projection viewport
transformation rangggrmation transformation transformation

FRAGMEN ROCESSING

S\

L

world space .canonical
view volume

Missing piece:

Rasterization

* First job: enumerate the pixels covered
by a primitive VERTEX F
—which pixels fall inside triangle

)CESSING

—includes "clipping” content outside view
volume

» RASTE
* Second job: interpolate values across
the primitive
—e.g. colors computed at vertices

FRAGMEN ROCESSING

—e.g. normals at vertices
—e.g. texture coordinates

Fragment Processing

APPL TION

* Hidden surface removal (occlusion) -
only the closest object is drawn

VERTEX PROCESSING

* Per-fragment shading:

* determine color of the pixel based
on a shading model

RASTE ATION

* diffuse color might come from a
texture

» FRAGMEN ROCESSING

* Blending, compositing - e.g.:
* anti-aliasing
* transparency / alpha blending

Hidden Surface Removal

e Two motivations: realism and efficiency

Back face culling

* For closed shapes you will never see the inside
—therefore only draw surfaces that face the camera
—implement by checking n - v

/ -
\

Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
* Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
in the drawing order

Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
* Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
in the drawing order

Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
* Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
in the drawing order

Works great if the ordering is /\
easy to find... = o=z
ST L ———

Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
* Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
in the drawing order

Works great if the ordering is /\
easy to find... = o=z
ST L ———

... but often it isn't. —7

The z buffer

* |In many (most) applications maintaining a z sort is too
expensive

— changes all the time as the view changes
— many data structures exist, but complex

* Solution: draw in any order, keep track of closest

— allocate extra channel per pixel to keep track of closest depth
so far

— when drawing, compare object’s depth to current closest
depth and discard if greater

— this works just like any other compositing operation

© 2014 Steve Marschner * 23

The z buffer

~
~

-

-

~
-

~
-

-

-

-

['1e 30 As|04]

.
w|lo|lo|lo|o|lo|o|o| [v|o
wiw|lo|lo|o|o|o|o| [v|w
wiwlw|o|o|lo|o|o| [v|w
wiwiw|w|o|lo|o|o| |[v|w
winivlv|wv|o|o|o| |v|w
wiuviwvlviwviv|o|lo| |[v|w
wivivivjviviv|o| |v|w

I I
o)

ol o}

Toll RTo N To!
wiwiw|w
WiLviw|w|w
wWiviwlw|wv|w
ToR BT HToR RTo N NTo N NV N HYo!

+ +
Slolo|lo|olo]|blo] |lolo|ola|ao| oo
o|lo|o|o|o|o|o|o| |[w|o|o|lo|o|lo|o|o
olo|o|o|o|o|o|o| Bl o|lo|o|lo|lo|o
o|lo|o|o|o|o|o|o| |w]|wv|w|o|o|lo|o|o
o|lo|lo|o|o|o|o|o| |vw|w|lwv|vw|o|o|o|o
o|lo|o|lo|o|o|o|o| [v|wv|lv|lwv|jwvw|o|o|o
o|lo|o|lo|o|o|o|o| |[v|wilv]|v|iv]|w|o|o
o|lo|o|o|o|o|o|o| |v|wvwiv]|viv|w|w|o

— another example of a memory-intensive brute force
approach that works and has become the standard

© 2014 Steve Marschner » 24

Precision in z buffer

* The precision is distributed between the near and far
clipping planes

— this is why these planes have to exist

— also why you can’t always just set them to very small and very
large distances

* Generally use z’ (not world z) in z buffer

© 2014 Steve Marschner * 25

Interpolating in projection

projection plane

eye point
®

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner * 26

Interpolating in projection

projection plane

X

projections of
endpoints

/

eye point

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner * 26

Interpolating in projection

projection plane

projection
eye point " of midpoint

®

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner * 26

Interpolating in projection

projection plane

eye point

projects
to midpoint
20 (zo+21)/ 2 Z1

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner * 26

Interpolating in projection

projection plane

eye point

Mo ¢ ¥ L
—

equally spaced z (distance)

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner * 26

Interpolating in projection

projection plane

eye point

projects
to midpoint

I

zo (zo+2z7)/2 Z

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner * 26

Interpolating in projection

projection plane

eye point

Mo ¢ ¥ L
—

equally spaced z' (screen depth)

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner * 26

