Computer Graphics

Lecture 18
Hierarchical Transformations
The Graphics Pipeline



Announcements

e No more problems will be added to HW?2.



Transformation Hierarchies
AKA Scene Graphs

* Represent a drawing (“scene’”) as a list of objects
* Transform for each object

— can use minimal primitives: ellipse is transformed circle
— transform applies to points of object




Example

* Can represent drawing with flat list
— but editing operations require updating many transforms
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Example

* Can represent drawing with flat list
— but editing operations require updating many transforms
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Groups of objects

* Treat a set of objects as one
* Introduce new object type: group

— contains list of references to member objects
* This makes the model into a tree

— interior nodes = groups
— leaf nodes = objects
— edges = membership of object in group

Cornell CS4620 Fall 2014 « Lecture 9 © 2014 Steve Marschner * 5



Demo: Drawing in PowerPoint
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Example

* Add group as a new object type
— lets the data structure reflect the drawing structure
— enables high-level editing by changing just one node
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Example

* Add group as a new object type
— lets the data structure reflect the drawing structure
— enables high-level editing by changing just one node
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Groups of objects

* Treat a set of objects as one
* Introduce new object type: group

— contains list of references to member objects
* This makes the model into a tree

— interior nodes = groups
— leaf nodes = objects
— edges = membership of object in group
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The Scene Graph (tree)

* A name given to various kinds of graph structures (nodes
connected together) used to represent scenes

* Simplest form: tree
— just saw this
— every node has one parent

— leaf nodes are identified
with objects in the scene
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Instances

* Simple idea: allow an object to be a member of more than
one group at once

— transform different in each case
— leads to linked copies
— single editing operation changes all instances
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Example: Whiteboard
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Questions?



Questions?

 That wraps up our discussion of transformations.

e \We have an (almost) fully-featured wireframe
rendering framework.

* We haven't implemented clipping yet for geometry outside the
view volume.

* Next up:
* more realism: occlusion, shading

* speed: using hardware



Graphics Pipeline: Overview

you are here wmp

3D transformations; shading =s§»  VERTEX PROCESSING

conversion of primitives to pixels

blending, compositing, shading ms» rFrRAGMEN

ROCESSING

user sees this ==




Application sends geometric
primitives to renderer (e.g., to GPU) —

Vertices are transformed to image

— APPL

space (we've done this part!)

Primitives are converted into pixel-

— VERTEX PROCESSING

shaped "fragments”; values are
interpolated across primitives.

Fragments are shaded, blended,
and composited to determine
pixel colors.

» RASTE

FRAGMEN ROCESSING

Pixel colors written to the _
framebuffer appear on the screen.




Command Stream

Application sends geometric
primitives to renderer (e.g., to GPU) —

—

What primitives?

* Points

VERTEX PROCESSING

* Line segments

— and chains of connected line segments
* Triangles
And that’s all!

— Curves! Approximate them with chains of line
segments

FRAGMENT PROCESSING
— Polygons? Break them up into triangles

— Curved surfaces! Approximate them with
triangles

* Trend over the decades: toward minimal primitives

— simple, uniform, repetitive: good for parallelism



Vertex Processing

APPL

TION

Vertices are transformed to image
space (we've done this part!)
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Rasterization

* First job: enumerate the pixels covered
by a primitive VERTEX F
—which pixels fall inside triangle

)CESSING

—includes "clipping” content outside view
volume

» RASTE
* Second job: interpolate values across
the primitive
—e.g. colors computed at vertices

FRAGMEN ROCESSING

—e.g. normals at vertices
—e.g. texture coordinates



Fragment Processing

APPL TION

* Hidden surface removal (occlusion) -
only the closest object is drawn

VERTEX PROCESSING

* Per-fragment shading:

* determine color of the pixel based
on a shading model

RASTE ATION

* diffuse color might come from a
texture

» FRAGMEN ROCESSING

* Blending, compositing - e.g.:
* anti-aliasing
* transparency / alpha blending



Hidden Surface Removal

e Two motivations: realism and efficiency




Back face culling

* For closed shapes you will never see the inside
—therefore only draw surfaces that face the camera
—implement by checking n - v
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Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
* Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
in the drawing order
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Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
* Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
in the drawing order

Works great if the ordering is /\
easy to find... = o=z
ST L ———
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The z buffer

* |In many (most) applications maintaining a z sort is too
expensive

— changes all the time as the view changes
— many data structures exist, but complex

* Solution: draw in any order, keep track of closest

— allocate extra channel per pixel to keep track of closest depth
so far

— when drawing, compare object’s depth to current closest
depth and discard if greater

— this works just like any other compositing operation

© 2014 Steve Marschner * 23



The z buffer
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— another example of a memory-intensive brute force
approach that works and has become the standard
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Precision in z buffer

* The precision is distributed between the near and far
clipping planes

— this is why these planes have to exist

— also why you can’t always just set them to very small and very
large distances

* Generally use z’ (not world z) in z buffer
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Interpolating in projection

projection plane

eye point
®

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

X

projections of
endpoints

/

eye point

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

projection
eye point " of midpoint

®

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

eye point

projects
to midpoint
20 (zo+21)/ 2 Z1

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

eye point

Mo ¢ ¥ L
—

equally spaced z (distance)

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

eye point

projects
to midpoint

I

zo (zo+2z7)/2 Z

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

eye point

Mo ¢ ¥ L
—

equally spaced z' (screen depth)

linear interp. in screen space # linear interp. in world (eye) space
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