1. Consider the side-view of a perspective camera shown below: the image looks at the yz plane from the +x direction. The scene point at \((x, y, z)\) appears in the viewport at \((x_s, y_s, -d)\). Based on this view, calculate the value of \(y_s\), the y coordinate of the viewing ray’s intersection with the viewport, in terms of the pixel’s 3D coordinates \((x, y, z)\) and the camera’s focal length \(d\). Hint: no trig necessary! Try similar triangles.
2. Circle each of the 3D homogeneous points below that are equivalent to the point \mathbf{x}.
\[
\mathbf{x} = [0, 2, 3, 1]^T
\]
\[
\begin{align*}
\mathbf{a} &= [0, 8, 12, 3]^T \\
\mathbf{b} &= [1, 4, 6, 2]^T \\
\mathbf{c} &= [0, 4, 6, 1]^T \\
\mathbf{d} &= [0, -200, -300, -100]^T
\end{align*}
\]

3. The identity matrix maps a point to itself. For points in \mathbb{R}^4, the identity matrix is a 4x4 matrix with ones on the diagonal and zeros everywhere else. For 3D homogeneous coordinates, there are multiple matrices that leave points unchanged up to equivalency after division by w. Describe the form of all possible identity matrices on 3D homogeneous coordinates.