
Computer Graphics
Lecture 17


Projection Transformations 
Perspective Projection



Announcements
• HW2 is out - a couple more problems may 

be added no later than Wednesday night.



Viewing Transformations: 
Overview

✐

✐

✐

✐

✐

✐

✐

✐

7.1. Viewing Transformations 147

object space

world space

camera space

canonical
view volume

sc
re

e
n

 s
p

a
ce

modeling
transformation

viewport
transformation

projection
transformation

camera
transformation

Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

A standard sequence of transforms to go from 
object (model) space to screen (image) space



Last time: Orthographic 
Camera

• Rays were already parallel to the z axis, so we 
only had to fiddle with scales.


• Introduced near and far clipping planes 
• Excuse: throw away stuff behind the camera and too far away

• Real reason: limit the range of possible depths  

(we'll need this later)

✐

✐

✐

✐

✐

✐

✐

✐

7.1. Viewing Transformations 149

Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =

⎡

⎢

⎢

⎣

2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1

⎤

⎥

⎥

⎦

(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.



Orthographic Projection
• The result of our hard work:

Morth =

�

⇧⇧⇤

2
r�l 0 0 � r+l

r�l

0 2
t�b 0 � t+b

t�b

0 0 2
n�f �n+f

n�f

0 0 0 1

⇥

⌃⌃⌅

✐

✐

✐

✐

✐

✐

✐

✐

7.1. Viewing Transformations 149

Figure 7.5. The orthographic view volume is along the negative z-axis, so f is a more
negative number than n, thus n > f.

the bounding planes as follows:

x = l ≡ left plane,

x = r ≡ right plane,

y = b ≡ bottom plane,

y = t ≡ top plane,

z = n ≡ near plane,

z = f ≡ far plane.

That vocabulary assumes a viewer who is looking along the minus z-axis with

Figure 7.4. The ortho-
graphic view volume.

his head pointing in the y-direction. 1 This implies that n > f , which may be
unintuitive, but if you assume the entire orthographic view volume has negative z
values then the z = n “near” plane is closer to the viewer if and only if n > f ;
here f is a smaller number than n, i.e., a negative number of larger absolute value
than n.

This concept is shown in Figure 7.5. The transform from orthographic view

volume to the canonical view volume is another windowing transform, so we can

simply substitute the bounds of the orthographic and canonical view volumes into

Equation 6.7 to obtain the matrix for this transformation: n and f appear in what
might seem like reverse
order because n − f ,
rather than f − n, is a
positive number.

Morth =

⎡

⎢

⎢

⎣

2
r−l 0 0 − r+l

r−l

0 2

t−b
0 − t+b

t−b

0 0 2
n−f

− n+t
n−f

0 0 0 1

⎤

⎥

⎥

⎦

(7.3)

1Most programmers find it intuitive to have the x-axis pointing right and the y-axis pointing up. In
a right-handed coordinate system, this implies that we are looking in the −z direction. Some systems
use a left-handed coordinate system for viewing so that the gaze direction is along +z. Which is best
is a matter of taste, and this text assumes a right-handed coordinate system. A reference that argues

for the left-handed system instead is given in the notes at the end of the chapter.

Morth

<latexit sha1_base64="3atHq01TVzHa0ANucoEySEz28ic=">AAACBHicbZDLSsNAFIYn9VbrLeqym8EiuCqJFHRZdONGqGAv0IYwmU7aoTOTMDMRSsjCja/ixoUibn0Id76NkzQLbf1h4OM/5zDn/EHMqNKO821V1tY3Nreq27Wd3b39A/vwqKeiRGLSxRGL5CBAijAqSFdTzcgglgTxgJF+MLvO6/0HIhWNxL2ex8TjaCJoSDHSxvLt+ogjPQ3C9Dbz04IlTyOpp1lW8+2G03QKwVVwS2iAUh3f/hqNI5xwIjRmSKmh68TaS5HUFDOS1UaJIjHCMzQhQ4MCcaK8tDgig6fGGcMwkuYJDQv390SKuFJzHpjOfE21XMvN/2rDRIeXXkpFnGgi8OKjMGFQRzBPBI6pJFizuQGEJTW7QjxFEmFtcstDcJdPXoXeedNtNVt3rUb7qoyjCurgBJwBF1yANrgBHdAFGDyCZ/AK3qwn68V6tz4WrRWrnDkGf2R9/gDAoJjO</latexit>

Camera Coordinates Normalized Device Coordinates



Perspective Projection

• In a perspective camera, we have to warp 
space in a more dramatic way.



Pers

Ray Verrier



Pers

Ray Verrier



Perspective Projection

• In a perspective camera, we have to warp 
space in a more dramatic way.


• Demo: https://www.cs.cornell.edu/courses/
cs4620/2019fa/demos/view_explore/
view_explore.html

https://www.cs.cornell.edu/courses/cs4620/2019fa/demos/view_explore/view_explore.html
https://www.cs.cornell.edu/courses/cs4620/2019fa/demos/view_explore/view_explore.html
https://www.cs.cornell.edu/courses/cs4620/2019fa/demos/view_explore/view_explore.html
https://www.cs.cornell.edu/courses/cs4620/2019fa/demos/view_explore/view_explore.html


Perspective Projection
• In a perspective camera, we have to warp space 

in a more dramatic way.


• Demo: https://www.cs.cornell.edu/courses/
cs4620/2019fa/demos/view_explore/
view_explore.html


• Recall: linear transformations preserve 
parallelism.  
 
We don't have the tools for the job!

https://www.cs.cornell.edu/courses/cs4620/2019fa/demos/view_explore/view_explore.html
https://www.cs.cornell.edu/courses/cs4620/2019fa/demos/view_explore/view_explore.html
https://www.cs.cornell.edu/courses/cs4620/2019fa/demos/view_explore/view_explore.html
https://www.cs.cornell.edu/courses/cs4620/2019fa/demos/view_explore/view_explore.html


Perspective Projection

eye

(x,y,z)viewport

(xs,ys,-d)

d

z

y
ys

viewing ray

Exercise: 

Find ys, the y coordinate of the point where (x, y, z) 
projects onto the viewport.



© 2014 Steve Marschner • 

Homogeneous coordinates revisited

• Perspective requires division
– that is not part of affine transformations
– in affine, parallel lines stay parallel

• therefore not vanishing point
• therefore no rays converging on viewpoint

• “True” purpose of homogeneous coords: projection

 11



© 2014 Steve Marschner • 

Homogeneous coordinates revisited

• Introduced w = 1 coordinate as a placeholder

– used as a convenience for unifying translation with linear

• Can also allow arbitrary w

 12



© 2014 Steve Marschner • 

Implications of w

• All scalar multiples of a 4-vector are equivalent

• When w is not zero, can divide by w
– therefore these points represent “normal” affine points

• When w is zero, it’s a point at infinity, a.k.a. a direction
– this is the point where parallel lines intersect
– can also think of it as the vanishing point

• Digression on projective space

 13



© 2014 Steve Marschner • 

Perspective projection

to implement perspective, just move z to w:

 14



What can projective 
transformations do?

• Map a quadrilateral to another quadrilateral.


• https://iis.uibk.ac.at/public/piater/courses/
demos/homography/homography.xhtml

https://iis.uibk.ac.at/public/piater/courses/demos/homography/homography.xhtml
https://iis.uibk.ac.at/public/piater/courses/demos/homography/homography.xhtml


What can projective 
transformations do?

• Map a quadrilateral to another quadrilateral.


• https://iis.uibk.ac.at/public/piater/courses/
demos/homography/homography.xhtml


• Aside: line segments still map to line 
segments, so we can still do wireframe 
rendering.

https://iis.uibk.ac.at/public/piater/courses/demos/homography/homography.xhtml
https://iis.uibk.ac.at/public/piater/courses/demos/homography/homography.xhtml


© 2014 Steve Marschner • 

View volume: perspective

 17



© 2014 Steve Marschner • 

View volume: perspective (clipped)

 18



© 2014 Steve Marschner • 

Carrying depth through perspective

• Perspective has a varying denominator—can’t preserve depth!

• Compromise: preserve depth on near and far planes

– that is, choose a and b so that z’(n) = n and z’(f) = f.

 19



© 2014 Steve Marschner • 

Carrying depth through perspective

 20

Example:

n=1, f=10

z

z'



© 2014 Steve Marschner • 

Carrying depth through perspective

 20

Example:

n=1, f=10

z' = z
z

z'



© 2014 Steve Marschner • 

Carrying depth through perspective

• Perspective has a varying denominator—can’t preserve depth!

• Compromise: preserve depth on near and far planes

– that is, choose a and b so that z’(n) = n and z’(f) = f.

 21



© 2014 Steve Marschner • 

Official perspective matrix

• Use near plane distance as the projection distance
– i.e., d = –n

• Scale by –1 to have fewer minus signs
– scaling the matrix does not change the projective transformation

 22

P =

�

⇧⇧⇤

n 0 0 0
0 n 0 0
0 0 n + f �fn
0 0 1 0

⇥

⌃⌃⌅



© 2014 Steve Marschner • 

Perspective projection matrix

• Product of perspective matrix with orth. projection matrix

 23

Mper = MorthP

=

�

⇧⇧⇧⇤

2
r�l 0 0 � r+l

r�l

0 2
t�b 0 � t+b

t�b

0 0 2
n�f �n+f

n�f

0 0 0 1

⇥

⌃⌃⌃⌅

�

⇧⇧⇤

n 0 0 0
0 n 0 0
0 0 n + f �fn
0 0 1 0

⇥

⌃⌃⌅

=

�

⇧⇧⇧⇧⇤

2n
r�l 0 l+r

l�r 0

0 2n
t�b

b+t
b�t 0

0 0 f+n
n�f

2fn
f�n

0 0 1 0

⇥

⌃⌃⌃⌃⌅



© 2014 Steve Marschner • 

Perspective transformation chain

• Transform into world coords (modeling transform, Mm)

• Transform into eye coords (camera xf., Mcam = Fc–1)
• Perspective matrix, P
• Orthographic projection, Morth

• Viewport transform, Mvp

 24

ps = MvpMorthPMcamMmpo

�

⇧⇧⇤

xs

ys

zc

1

⇥

⌃⌃⌅ =

�

⇧⇧⇤

nx
2 0 0 nx�1

2

0 ny

2 0 ny�1
2

0 0 1 0
0 0 0 1

⇥

⌃⌃⌅

�

⇧⇧⇤

2
r�l 0 0 � r+l

r�l

0 2
t�b 0 � t+b

t�b

0 0 2
n�f �n+f

n�f

0 0 0 1

⇥

⌃⌃⌅

�

⇧⇧⇤

n 0 0 0
0 n 0 0
0 0 n + f �fn
0 0 1 0

⇥

⌃⌃⌅McamMm

�

⇧⇧⇤

xo

yo

zo

1

⇥

⌃⌃⌅


