Computer Graphics

Lecture 16
Viewing Transformations: Orthographic Perspective Projection
Announcements

• A2 is in! Artifact showcase will happen later this week.
Viewing Transformations:
Overview
A standard sequence of transforms to go from object (model) space to screen (image) space
Wireframe Rendering
Model Matrix

Input: Scene in model coordinates
Parameters: Pose, scale, etc of model in scene
Output: Scene in world coordinates
Overview

• https://www.cs.cornell.edu/courses/cs4620/2019fa/demos/view_explore/view_explore.html
Camera Matrix

Input: Scene in world coordinates

Parameters: Camera frame \((u, v, w, e)\)

Output: Scene in camera coordinates
Projection Matrix - Orthographic

Input: Scene in (canonically-posed) camera coordinates

Parameters: Orthographic viewport dimensions

Output: Normalized device coordinates
Viewport Matrix

Input: Scene in the canonical view volume

Parameters: W, H (image dimensions in pixels)

Output: (x, y) in pixel coordinates; z unchanged
Let's build it
Viewport Matrix

Input: Scene in the canonical view volume

Parameters: W, H (image dimensions in pixels)

Output: (x, y) in pixel coordinates; z unchanged
Projection Matrix - Orthographic

Input: Scene in (canonically-posed) camera coordinates

Parameters: Orthographic viewport dimensions

Output: Normalized device coordinates
Camera Matrix

Input: Scene in world coordinates
Parameters: Camera frame \((u, v, w, e)\)
Output: Scene in camera coordinates
Model Matrix

Input: Scene in model coordinates

Parameters: Pose, scale, etc of model in scene

Output: Scene in world coordinates
What about perspective cameras?

Perspective Projection

Exercise:
Find y_s, the y coordinate of the point where (x, y, z) projects onto the viewport.