

# **Computer Graphics**

#### Lecture 15 Viewing Transformations

A tentative plan:

• HW2 out Monday 2/10, due Tuesday 2/18

- HW2 out Monday 2/10, due Tuesday 2/18
- A3 out Friday 2/14, due Friday 2/28

- HW2 out Monday 2/10, due Tuesday 2/18
- A3 out Friday 2/14, due Friday 2/28
- FP proposals due Friday 2/21, back Monday

- HW2 out Monday 2/10, due Tuesday 2/18
- A3 out Friday 2/14, due Friday 2/28
- FP proposals due Friday 2/21, back Monday
- Takehome Midterm out Friday 2/21, due Monday

## **Transformations and Normals**

### **Transforming normal vectors**

- Transforming surface normals
  - -differences of points (and therefore tangents) transform OK -normals do not --> use inverse transpose matrix



have:  $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want:  $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set  $X = (M^T)^{-1}$ then:  $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ 

### **Transforming normal vectors**

- Transforming surface normals
  - -differences of points (and therefore tangents) transform OK -normals do not --> use inverse transpose matrix



have:  $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want:  $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set  $X = (M^T)^{-1}$ then:  $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ 

## **Viewing Transformations**

A standard sequence of transforms to go from **object (model) space** to **screen (image) space** 

## Viewing Transformations

A standard sequence of transforms to go from **object (model) space** to **screen (image) space** 



## Model Transform

- From "object space" to "world space"
- Or: change from "object basis" to "world basis"

## Model Transform

- From "object space" to "world space"
- Exercise: design a model matrix to create a skyscraper out of a cube.
- A1 cube mesh side length 2, centered at origin
- Skyscraper has:
  - (-1, -1, -1) in object space is at (4, 0, 3)
  - World space dimensions are (0.3, 0.08, 0.25)