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Transformations: So Far
-2x2 matrices are linear functions that:

- Move 2D points from one place to another 
 

- Change the basis in which points are represented

-We can:

or, equivalently:

scale rotate reflectshear

but we can't do translation!
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Homogeneous coordinates

• A trick for representing the foregoing more elegantly
• Extra component w for vectors, extra row/column for 

matrices
– for affine, can always keep w = 1

• Represent linear transformations with dummy extra 
row and column
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Homogeneous coordinates

• Represent translation using an extra column
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Affine transformations

• The set of transformations we have been looking at is 
known as the “affine” transformations
– straight lines preserved; parallel lines preserved
– ratios of lengths along lines preserved (midpoints preserved)
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Affine change of coordinates

• Six degrees of freedom

or

 8
"canonical" basis: e1 =


1
0

�
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Affine change of coordinates

• Coordinate frame: point plus basis
• Interpretation: transformation 

changes representation of 
point from one basis to another

• “Frame to canonical” matrix has 
frame in columns
– takes points represented in frame
– represents them in canonical basis
– e.g. [0 0], [1 0], [0 1]

• Seems backward but bears thinking about
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Rigid motions

• A transform made up of only translation and rotation is 
a rigid motion or a rigid body transformation

• The linear part is an orthonormal matrix
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Affine Composition Example: 
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

 11

Reminder: R = 
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Exercise: Rotate  
around not-the-origin

• Coordinate Frame interpretation:


1. Move to origin: change to a new frame w/ origin at p 

2. Rotate around origin in that frame


3. Move back to p: change from frame back to 
canonical
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Similarity Transformations

• When we move an object to the canonical frame to 
apply a transformation, we are changing coordinates
– the transformation is easy to express in object’s frame
– so define it there and transform it

– Te is the transformation expressed wrt. {e1, e2}

– TF is the transformation expressed in natural frame

– F is the frame-to-canonical matrix [u v p]

• This is a similarity transformation
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How do we find         ?
• Can always invert a matrix algebraically


• Simple cases can be done geometrically:


• translation: negate tx, ty


• rotation: rotate by -theta


• scale: scale by 1/s



How do we find         ?
• Rigid transformations:


• Linear part (Q) is orthogonal matrix


•  


• Inverse can be derived:

Q�1 = QT
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Transformations in 3D
• Pretty much the same stuff


• but with one additional D
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Translation

 18



© 2014 Steve Marschner •

Translation

 18



© 2014 Steve Marschner •

Translation

 18



© 2014 Steve Marschner •

Translation
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Scaling
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Scaling
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Scaling
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Scaling
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Rotations: A bit different

• �

• A rotation in 2D is around a point
• A rotation in 3D is around an axis

–so 3D rotation is w.r.t a line, not just a point
–there are many more 3D rotations than 2D

• a 3D space around a given point, not just 1D

2D 3D
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Rotation about z axis
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Rotation about z axis
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Rotation about x axis
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Rotation about x axis
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Rotation about y axis
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Rotation about y axis
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Rotations around an 
arbitrary axis

• Tricky - many ways to describe them:


• Euler angles: 3 rotations about 3 axes


• (Axis, angle)


• Quaternions


• Simplest conceptually: indirectly specify via 
coordinate frame transformations.


• We did this when finding a camera basis!



Rotations around an 
arbitrary axis

• Simplest conceptually: indirectly specify via 
coordinate frame transformations.


• We did this when finding a camera basis!


• Simplest practically: type in a formula from 
wikipedia:

https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
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Transforming normal vectors

• Transforming surface normals
–differences of points (and therefore tangents) transform OK
–normals do not --> use inverse transpose matrix

 26
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