
Computer Graphics
Lecture 14

Affine Composition
3D Transformations

Announcements

Announcements

Transformations: So Far

scale rotate reflectshear

Transformations: So Far
-2x2 matrices are linear functions that:

scale rotate reflectshear

Transformations: So Far
-2x2 matrices are linear functions that:

- Move 2D points from one place to another 
 

scale rotate reflectshear

Transformations: So Far
-2x2 matrices are linear functions that:

- Move 2D points from one place to another 
 

or, equivalently:

scale rotate reflectshear

Transformations: So Far
-2x2 matrices are linear functions that:

- Move 2D points from one place to another 
 

- Change the basis in which points are represented

or, equivalently:

scale rotate reflectshear

Transformations: So Far
-2x2 matrices are linear functions that:

- Move 2D points from one place to another 
 

- Change the basis in which points are represented

-We can:

or, equivalently:

scale rotate reflectshear

Transformations: So Far
-2x2 matrices are linear functions that:

- Move 2D points from one place to another 
 

- Change the basis in which points are represented

-We can:

or, equivalently:

scale rotate reflectshear

but we can't do translation!

© 2014 Steve Marschner •

Homogeneous coordinates

• A trick for representing the foregoing more elegantly
• Extra component w for vectors, extra row/column for

matrices
– for affine, can always keep w = 1

• Represent linear transformations with dummy extra
row and column

 4

© 2014 Steve Marschner •

Homogeneous coordinates

• Represent translation using an extra column

 5

Transformations: So Far
-Transformations are composable via

matrix multiplication:

T1: Rotate 45 CCW

T2

T2: Translate (1, 0.5)

T1

Transformations: So Far
-Transformations are composable via

matrix multiplication:

T1: Rotate 45 CCW

T2

applied right-to-left!T2: Translate (1, 0.5)

T1

Transformations: So Far
-Transformations are composable via

matrix multiplication:

T1: Rotate 45 CCW

T2

T2T1 applied right-to-left!T2: Translate (1, 0.5)

T1

© 2014 Steve Marschner •

Affine transformations

• The set of transformations we have been looking at is
known as the “affine” transformations
– straight lines preserved; parallel lines preserved
– ratios of lengths along lines preserved (midpoints preserved)

 7

© 2014 Steve Marschner •

Affine change of coordinates

• Six degrees of freedom

or

 8
"canonical" basis: e1 =


1
0

�

<latexit sha1_base64="Z0QYdivjvTHq3XJmgttLZ8rLeO8=">AAACD3icbVDLSsNAFJ34rPUVdelmsCiuSmLFx0IounFZwT6gCWEyvW2HTiZhZiKW0D9w46+4caGIW7fu/BunD4paD1w4nHMv994TJpwp7Thf1tz8wuLScm4lv7q2vrFpb23XVJxKClUa81g2QqKAMwFVzTSHRiKBRCGHeti7Gvr1O5CKxeJW9xPwI9IRrM0o0UYK7AMIXHyBvRA6TGRhRLRk9wPX8xwPRGsqBHbBKToj4FniTkgBTVAJ7E+vFdM0AqEpJ0o1XSfRfkakZpTDIO+lChJCe6QDTUMFiUD52eifAd43Sgu3Y2lKaDxSf05kJFKqH4Wm09zXVX+9ofif10x1+8zPmEhSDYKOF7VTjnWMh+HgFpNANe8bQqhk5lZMu0QSqk2E+VEI50OcTF+eJbWjolsqlm6OC+XLSRw5tIv20CFy0Skqo2tUQVVE0QN6Qi/o1Xq0nq03633cOmdNZnbQL1gf39zMnLs=</latexit>

e2 =


0
1

�

<latexit sha1_base64="L66J5q6TpfV8HcuHpaDGo+/Bjus=">AAACD3icbVDJSgNBEO2JW4xb1KOXxqB4CjOJuByEoBePEcwCmWHo6VSSJj09Q3ePGIb8gRd/xYsHRbx69ebf2FkIanxQ8Hiviqp6QcyZ0rb9ZWUWFpeWV7KrubX1jc2t/PZOXUWJpFCjEY9kMyAKOBNQ00xzaMYSSBhwaAT9q5HfuAOpWCRu9SAGLyRdwTqMEm0kP38IfglfYDeALhNpEBIt2f3Qdl3HBdGeCX6+YBftMfA8caakgKao+vlPtx3RJAShKSdKtRw71l5KpGaUwzDnJgpiQvukCy1DBQlBeen4nyE+MEobdyJpSmg8Vn9OpCRUahAGptPc11N/vZH4n9dKdOfMS5mIEw2CThZ1Eo51hEfh4DaTQDUfGEKoZOZWTHtEEqpNhLlxCOcjnMxenif1UtEpF8s3x4XK5TSOLNpD++gIOegUVdA1qqIaougBPaEX9Go9Ws/Wm/U+ac1Y05ld9AvWxzfecJy8</latexit>

© 2014 Steve Marschner •

Affine change of coordinates

• Coordinate frame: point plus basis
• Interpretation: transformation 

changes representation of 
point from one basis to another

• “Frame to canonical” matrix has 
frame in columns
– takes points represented in frame
– represents them in canonical basis
– e.g. [0 0], [1 0], [0 1]

• Seems backward but bears thinking about

 9

© 2014 Steve Marschner •

Rigid motions

• A transform made up of only translation and rotation is
a rigid motion or a rigid body transformation

• The linear part is an orthonormal matrix

 10

© 2014 Steve Marschner •

Affine Composition Example: 
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

 11

Reminder: R =

© 2014 Steve Marschner •

Affine Composition Example: 
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

 11

Reminder: R =

© 2014 Steve Marschner •

Affine Composition Example: 
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

 11

Reminder: R =

© 2014 Steve Marschner •

Affine Composition Example: 
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

 11

Reminder: R =

© 2014 Steve Marschner •

Exercise:
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

 12

Reminder: R =

© 2014 Steve Marschner •

Exercise:
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

 12

Reminder: R =

© 2014 Steve Marschner •

Exercise:
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

 12

Reminder: R =

© 2014 Steve Marschner •

Exercise:
Rotation about not-the-origin

• Want to rotate about a particular point
– could work out formulas directly…

• Know how to rotate about the origin
– so translate that point to the origin

 12

Reminder: R =

Exercise: Rotate
around not-the-origin

• Coordinate Frame interpretation:

1. Move to origin: change to a new frame w/ origin at p

2. Rotate around origin in that frame

3. Move back to p: change from frame back to
canonical

© 2014 Steve Marschner • Cornell CS4620 Fall 2014 • Lecture 8

Similarity Transformations

• When we move an object to the canonical frame to
apply a transformation, we are changing coordinates
– the transformation is easy to express in object’s frame
– so define it there and transform it

– Te is the transformation expressed wrt. {e1, e2}

– TF is the transformation expressed in natural frame

– F is the frame-to-canonical matrix [u v p]

• This is a similarity transformation

 14

How do we find ?
• Can always invert a matrix algebraically

• Simple cases can be done geometrically:

• translation: negate tx, ty

• rotation: rotate by -theta

• scale: scale by 1/s

How do we find ?
• Rigid transformations:

• Linear part (Q) is orthogonal matrix

•

• Inverse can be derived:

Q�1 = QT
<latexit sha1_base64="bJsxWEiluy4+EW67AruSTQe4G0E=">AAAB83icbVDLSsNAFL3xWeur6tLNYBHcWBIrPhZC0Y3LFvqCNi2T6bQdOpmEmYlQQn/DjQtF3Poz7vwbJ2kQtR64cDjnXu69xws5U9q2P62l5ZXVtfXcRn5za3tnt7C331RBJAltkIAHsu1hRTkTtKGZ5rQdSop9j9OWN7lL/NYDlYoFoq6nIXV9PBJsyAjWRurWevGpM0M3qNar9wtFu2SnQIvEyUgRMlT7hY/uICCRT4UmHCvVcexQuzGWmhFOZ/lupGiIyQSPaMdQgX2q3Di9eYaOjTJAw0CaEhql6s+JGPtKTX3PdPpYj9VfLxH/8zqRHl65MRNhpKkg80XDiCMdoCQANGCSEs2nhmAimbkVkTGWmGgTUz4N4TrBxffLi6R5VnLKpXLtvFi5zeLIwSEcwQk4cAkVuIcqNIBACI/wDC9WZD1Zr9bbvHXJymYO4Bes9y9Jc5Cu</latexit>

Transformations in 3D
• Pretty much the same stuff

• but with one additional D

© 2014 Steve Marschner •

Translation

 18

© 2014 Steve Marschner •

Translation

 18

© 2014 Steve Marschner •

Translation

 18

© 2014 Steve Marschner •

Translation

 18

© 2014 Steve Marschner •

Scaling

 19

© 2014 Steve Marschner •

Scaling

 19

© 2014 Steve Marschner •

Scaling

 19

© 2014 Steve Marschner •

Scaling

 19

Rotations: A bit different

• �

• A rotation in 2D is around a point
• A rotation in 3D is around an axis

–so 3D rotation is w.r.t a line, not just a point
–there are many more 3D rotations than 2D

• a 3D space around a given point, not just 1D

2D 3D

© 2014 Steve Marschner •

Rotation about z axis

 21

© 2014 Steve Marschner •

Rotation about z axis

 21

© 2014 Steve Marschner •

Rotation about x axis

 22

© 2014 Steve Marschner •

Rotation about x axis

 22

© 2014 Steve Marschner •

Rotation about y axis

 23

© 2014 Steve Marschner •

Rotation about y axis

 23

Rotations around an
arbitrary axis

• Tricky - many ways to describe them:

• Euler angles: 3 rotations about 3 axes

• (Axis, angle)

• Quaternions

• Simplest conceptually: indirectly specify via
coordinate frame transformations.

• We did this when finding a camera basis!

Rotations around an
arbitrary axis

• Simplest conceptually: indirectly specify via
coordinate frame transformations.

• We did this when finding a camera basis!

• Simplest practically: type in a formula from
wikipedia:

https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle

© 2014 Steve Marschner •

Transforming normal vectors

• Transforming surface normals
–differences of points (and therefore tangents) transform OK
–normals do not --> use inverse transpose matrix

 26

© 2014 Steve Marschner •

Transforming normal vectors

• Transforming surface normals
–differences of points (and therefore tangents) transform OK
–normals do not --> use inverse transpose matrix

 26

