Announcements
Announcements
Transformations: So Far

- Scale
- Shear
- Rotate
- Reflect
Transformations: So Far

- 2x2 matrices are linear functions that:

- scale
- shear
- rotate
- reflect
Transformations: So Far

- 2x2 matrices are linear functions that:
 - Move 2D points from one place to another

scale shear rotate reflect
Transformations: So Far

- 2x2 matrices are linear functions that:
 - Move 2D points from one place to another

or, equivalently:

- scale
- shear
- rotate
- reflect
Transformations: So Far

- 2x2 matrices are linear functions that:
 - Move 2D points from one place to another

or, equivalently:
 - Change the basis in which points are represented

scale shear rotate reflect
Transformations: So Far

- 2x2 matrices are linear functions that:
 - Move 2D points from one place to another
 - Change the basis in which points are represented

or, equivalently:

- Change the basis in which points are represented

We can:

- scale
- shear
- rotate
- reflect
Transformations: So Far

- 2x2 matrices are linear functions that:
 - Move 2D points from one place to another
 - Change the basis in which points are represented

 or, equivalently:

 - Change the basis in which points are represented

- We can:
 - Scale
 - Shear
 - Rotate
 - Reflect

 but we can't do translation!
Homogeneous coordinates

• A trick for representing the foregoing more elegantly
• Extra component w for vectors, extra row/column for matrices
 – for affine, can always keep $w = 1$
• Represent linear transformations with dummy extra row and column

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \\ 1 \end{bmatrix}$$
Homogeneous coordinates

• Represent translation using an extra column

\[
\begin{bmatrix}
1 & 0 & t \\
0 & 1 & s \\
0 & 0 & 1 \\
\end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t \\ y + s \\ 1 \end{bmatrix}
\]
Transformations: So Far

- Transformations are **composable** via matrix multiplication:

T_1: Rotate 45 CCW
T_2: Translate (1, 0.5)
Transformations: So Far

- Transformations are **composable** via matrix multiplication:

 T_1: Rotate 45 CCW
 T_2: Translate (1, 0.5)
 applied right-to-left!
Transformations: So Far

- Transformations are **composable** via matrix multiplication:

\[T_1: \text{Rotate 45 CCW} \]
\[T_2: \text{Translate (1, 0.5)} \]

\[T_2T_1 \text{ applied right-to-left!} \]
Affine transformations

- The set of transformations we have been looking at is known as the “affine” transformations
 - straight lines preserved; parallel lines preserved
 - ratios of lengths along lines preserved (midpoints preserved)
Affine change of coordinates

- Six degrees of freedom

\[
\begin{bmatrix}
a_1 & a_2 & a_3 \\
a_4 & a_5 & a_6 \\
0 & 0 & 1
\end{bmatrix}
\]

or

\[
\begin{bmatrix}
u & v & p \\
0 & 0 & 1
\end{bmatrix}
\]

"canonical" basis:

\[
e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]
Affine change of coordinates

- Coordinate frame: point plus basis
- Interpretation: transformation changes representation of point from one basis to another
- “Frame to canonical” matrix has frame in columns
 - takes points represented in frame
 - represents them in canonical basis
 - e.g. [0 0], [1 0], [0 1]
- Seems backward but bears thinking about
Rigid motions

- A transform made up of only translation and rotation is a *rigid motion* or a *rigid body transformation*
- The linear part is an orthonormal matrix

\[R = \begin{bmatrix} Q & u \\ 0 & 1 \end{bmatrix} \]
Affine Composition Example: Rotation about not-the-origin

- Want to rotate about a particular point
 - could work out formulas directly…
- Know how to rotate about the origin
 - so translate that point to the origin

Reminder: $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

$$M = T^{-1}RT$$
Affine Composition Example: Rotation about not-the-origin

- Want to rotate about a particular point
 - could work out formulas directly…
- Know how to rotate about the origin
 - so translate that point to the origin

Reminder: $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

$$M = T^{-1} RT$$
Affine Composition Example: Rotation about not-the-origin

- Want to rotate about a particular point
 - could work out formulas directly…
- Know how to rotate about the origin
 - so translate that point to the origin

Reminder: $R = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix}$

$M = T^{-1}RT$
Affine Composition Example: Rotation about not-the-origin

- Want to rotate about a particular point
 - could work out formulas directly…
- Know how to rotate about the origin
 - so translate that point to the origin

\[M = T^{-1} R T \]

Reminder: \(R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \)
Exercise:
Rotation about not-the-origin

• Want to rotate about a particular point
 – could work out formulas directly…
• Know how to rotate about the origin
 – so translate that point to the origin

\[M = T^{-1} RT \]

Reminder: \(R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \)
Exercise: Rotation about not-the-origin

- Want to rotate about a particular point
 - could work out formulas directly...
- Know how to rotate about the origin
 - so translate that point to the origin

\[M = T^{-1}RT \]

Reminder: \(R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \)
Exercise: Rotation about not-the-origin

• Want to rotate about a particular point
 – could work out formulas directly…
• Know how to rotate about the origin
 – so translate that point to the origin

Reminder: \(R = \)

\[
M = T^{-1}RT
\]
Exercise:
Rotation about not-the-origin

• Want to rotate about a particular point
 – could work out formulas directly…
• Know how to rotate about the origin
 – so translate that point to the origin

Reminder: $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

$$M = T^{-1}RT$$
Exercise: Rotate around not-the-origin

• Coordinate Frame interpretation:

1. Move to origin: change to a new frame w/ origin at \(p \)
2. Rotate around origin in that frame
3. Move back to \(p \): change from frame back to canonical
Similarity Transformations

- When we move an object to the canonical frame to apply a transformation, we are changing coordinates – the transformation is easy to express in object’s frame – so define it there and transform it

\[T_e = FT_F F^{-1} \]

- \(T_e \) is the transformation expressed wrt. \(\{e_1, e_2\} \)
- \(T_F \) is the transformation expressed in natural frame
- \(F \) is the frame-to-canonical matrix \([u \ v \ p]\)
- This is a similarity transformation
How do we find F^{-1}?

- Can always invert a matrix algebraically.

- Simple cases can be done geometrically:
 - translation: negate tx, ty
 - rotation: rotate by $-\theta$
 - scale: scale by $1/s$
How do we find F^{-1}?

- Rigid transformations: $R = \begin{bmatrix} Q & u \\ 0 & 1 \end{bmatrix}$

- Linear part (Q) is orthogonal matrix

 - $Q^{-1} = Q^T$

- Inverse can be derived:

 $$R^{-1}R = \begin{bmatrix} Q^T & -Q^Tu \\ 0 & 1 \end{bmatrix} \begin{bmatrix} Q & u \\ 0 & 1 \end{bmatrix}$$
Transformations in 3D

• Pretty much the same stuff
 • but with one additional D
Translation

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Translation

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Translation

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Translation

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Scaling

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
=
\begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Scaling

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
=
\begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Scaling

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
=
\begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Scaling

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
s_x & 0 & 0 & 0 \\
0 & s_y & 0 & 0 \\
0 & 0 & s_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotations: A bit different

- A rotation in 2D is around a point
- A rotation in 3D is around an axis
 - so 3D rotation is w.r.t a line, not just a point
 - there are many more 3D rotations than 2D
 - a 3D space around a given point, not just 1D
Rotation about z axis

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotation about z axis

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix}
=
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotation about x axis

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos \theta & -\sin \theta & 0 \\
 0 & \sin \theta & \cos \theta & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Rotation about x axis

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotation about y axis

\[
\begin{bmatrix}
x'
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotation about y axis

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
1
\end{bmatrix} = \begin{bmatrix}
cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotations around an arbitrary axis

- Tricky - many ways to describe them:
 - Euler angles: 3 rotations about 3 axes
 - (Axis, angle)
 - Quaternions

- Simplest conceptually: indirectly specify via coordinate frame transformations.
 - We did this when finding a camera basis!
Rotations around an arbitrary axis

• Simplest conceptually: indirectly specify via coordinate frame transformations.

 • We did this when finding a camera basis!

• Simplest practically: type in a formula from wikipedia:

\[
R = \begin{bmatrix}
\cos \theta + u_x^2 (1 - \cos \theta) & u_x u_y (1 - \cos \theta) - u_z \sin \theta & u_x u_z (1 - \cos \theta) + u_y \sin \theta \\
u_y u_x (1 - \cos \theta) + u_z \sin \theta & \cos \theta + u_y^2 (1 - \cos \theta) & u_y u_z (1 - \cos \theta) - u_x \sin \theta \\
u_z u_x (1 - \cos \theta) - u_y \sin \theta & u_z u_y (1 - \cos \theta) + u_x \sin \theta & \cos \theta + u_z^2 (1 - \cos \theta)
\end{bmatrix}
\]
Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not --> use inverse transpose matrix

\[
\begin{align*}
t \cdot n &= t^T n = 0 \\
Mt \cdot Xn &= t^T M^T Xn = 0 \\
so \quad X &= (M^T)^{-1} \\
then \quad Mt \cdot Xn &= t^T M^T (M^T)^{-1} n = t^T n = 0
\end{align*}
\]
Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not --> use inverse transpose matrix

\[
\begin{align*}
\text{have: } & \quad t \cdot n = t^T n = 0 \\
\text{want: } & \quad Mt \cdot Xn = t^T M^T Xn = 0 \\
\text{so set } & \quad X = (M^T)^{-1} \\
\text{then: } & \quad Mt \cdot Xn = t^T M^T (M^T)^{-1} n = t^T n = 0
\end{align*}
\]