Computer Graphics

Lecture 14
Affine Composition
3D Transformations
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Transformations: So Far

- 2X2 matrices are linear functions that:

- Move 2D points from one place to another
or, equivalently:

- Change the basis in which points are represented
but we can't do translation!




Homogeneous coordinates

* A trick for representing the foregoing more elegantly

* Extra component w for vectors, extra row/column for

matrices

— for affine, can always keep w = |

* Represent linear transformations with dummy extra

row and column

Co

O

ax + by
cx + dy
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Homogeneous coordinates

* Represent translation using an extra column

o O =

0
1
0

T+t
YT+ S

1
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Transformations: So Far

- Transformations are composable via
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- Transformations are composable via
matrix multiplication:
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Affine transformations

* The set of transformations we have been looking at is
known as the “affine” transformations

— straight lines preserved; parallel lines preserved
— ratios of lengths along lines preserved (midpoints preserved)

AN
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Affine change of coordinates

* Six degrees of freedom

a1 as ag
a4 a5 dg
0 0 1
A
)
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"canonical" basis:
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0 0

>
1_
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Affine change of coordinates

* Coordinate frame: point plus basis

* Interpretation: transformation
changes representation of u
point from one basis to another

e “Frame to canonical” matrix has
frame in columns
— takes points represented in frame

>
1_

-11 V
— represents them in canonical basis _O 0
—e.g. [00],[I O],[0 I]
* Seems backward but bears thinking about
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Rigid motions

* A transform made up of only translation and rotation is
a rigid motion or a rigid body transformation

* The linear part is an orthonormal matrix
i B
R = ¢
0 1
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Affine Composition Example:
Rotation about not-the-origin

* Want to rotate about a particular point
— could work out formulas directly...

* Know how to rotate about the origin

— so translate that point to the origin

A

M =T 'RT

o

Reminder: R = {COSH _Sing}

sin@ cos6
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Affine Composition Example:
Rotation about not-the-origin

* Want to rotate about a particular point
— could work out formulas directly...

* Know how to rotate about the origin
— so translate that point to the origin

t M =T 'RT

y

A

Reminder: R = {COSH _Sing}
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© 2014 Steve Marschner ¢« | |



Exercise:
Rotation about not-the-origin

* Want to rotate about a particular point
— could work out formulas directly...

* Know how to rotate about the origin

— so translate that point to the origin

A

M =T 'RT

Reminder: R = {0089 _Sing}

sin@ cos6
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Exercise: Rotate
around not-the-origin

e Coordinate Frame interpretation:
1. Move to origin: change to a new frame w/ origin at p
2. Rotate around origin in that frame

3. Move back to p: change from frame back to
canonical



Similarity Transformations

* When we move an object to the canonical frame to
apply a transformation, we are changing coordinates

— the transformation is easy to express in object’s frame
— so define it there and transform it

T, =FTpF!
— T, is the transformation expressed wrt. {e|, e,}

— Tg is the transformation expressed in natural frame

— F is the frame-to-canonical matrix [u v p]

* This is a similarity transformation
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How do we find F—!?

e Can always invert a matrix algebraically

e Simple cases can be done geometrically:
e translation: negate tx, ty
e rotation: rotate by -theta

e scale: scale by 1/s



How do we find F—1 ?
Q@ u
= 0 1

* Rigid transformations:

e Linear part (Q) is orthogonal matrix
. QT =Q

* |nverse can be derived:
pip [@T —QTu][Q u

_ 0 1 _O 1_




Transformations in 3D

e Pretty much the same stuft

e but with one additional D



Translation

x 1 0 0 t.| [z
vl |10 1 0 ty| |y
21 [0 0 1 t,| |z

1 o 0 0 1] |1
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Rotations: A bit different

* A rotation in 2D is around a point

* A rotation in 3D is around an axis
—so 3D rotation is w.r.t a line, not just a point
—there are many more 3D rotations than 2D
*a 3D space around a given point, not just 1D

2D 3D



Rotation about z axis
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Rotation about z axis
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Rotation about x axis

x 1 0 0 0] [z
y'| |0 cosf —sinf 0] |y
21 |0 sin@ cos@ 0| |z

1 0 0 0 L1
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Rotation about x axis

x 1 0 0 0] [z
y'| |0 cosf —sinf 0] |y
21 |0 sin@ cos@ 0| |z

1 0 0 0 L1
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Rotation about y axis

&

N

/

/

/

—

cos 0

0
—sin 6

0

o B2 = O

sin ¢
0

cos 0

0

— O O O

— N e 8

© 2014 Steve Marschner ¢ 23



Rotation about y axis
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Rotations around an
arbitrary axis

e Tricky - many ways to describe them:
* Euler angles: 3 rotations about 3 axes
* (Axis, angle)

¢ Quaternions

e Simplest conceptually: indirectly specify via
coordinate frame transformations.

 We did this when finding a camera basis!



Rotations around an
arbitrary axis

e Simplest conceptually: indirectly specify via
coordinate frame transformations.

e We did this when finding a camera basis!

e Simplest practically: type in a formula from
wikipedia:

cos @ + u2 (1 — cos 6) Uy, (1 —cos) —u,sinf  wu,u, (1 —cosf) +u,sinf

R = | uyu, (1 —cosf) + u,sinf cos 0 + uZ (1 — cos 0) uyu, (1 — cosf) — u, sinf

3

| u,uy (1 —cosf) —u,sinf  w,u, (1 — cosb) + u, sin cos @ + u? (1 — cos 6)

~
-~


https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle

Transforming normal vectors

* Transforming surface normals
—differences of points (and therefore tangents) transform OK
—normals do not --> use inverse transpose matrix

A

have: t - m=t'n =0

want: Mt - Xn=tI'M? ' Xn =0

soset X = (M1)~!

then: Mt- Xn=t"'MT (M) n=tIn=0
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