Computer Graphics

Lecture 13
Transformation Composition
Homogeneous Coordinates
Affine Transformations
Announcements
Announcements
Feedback survey: Takeaways

• Pace: good to somewhat fast

• Math review at the beginning of the quarter

• Written homeworks to precede assignments
Last time: 2D Matrix Transformations
Linear transformation gallery

- Uniform scale

\[
\begin{bmatrix}
s & 0 \\
0 & s \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix} =
\begin{bmatrix}
sx \\
sy \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.5 & 0 \\
0 & 1.5 \\
\end{bmatrix}
\]
Linear transformation gallery

- Shear

\[
\begin{bmatrix}
1 & a \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix} =
\begin{bmatrix}
x + ay \\
y \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0.5 \\
0 & 1 \\
\end{bmatrix}
\]
Linear transformation gallery

- Nonuniform scale

\[
\begin{bmatrix}
s_x & 0 \\
0 & s_y
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
s_xx \\
s_yy
\end{bmatrix}
\begin{bmatrix}
1.5 & 0 \\
0 & 0.8
\end{bmatrix}
\]
Linear transformation gallery

- Reflection
 - can consider it a special case of nonuniform scale

\[
\begin{bmatrix}
-1 & 0 \\
0 & 1 \\
\end{bmatrix}
\]
Linear transformation gallery

- Rotation

\[
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
x \cos \theta - y \sin \theta \\
x \sin \theta + y \cos \theta
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.866 & -0.5 \\
0.5 & 0.866
\end{bmatrix}
\]
2D Matrix Transformations: Properties

- linear
- closed under composition
- associative
- not commutative
- applied right-to-left
Composing transformations

• Want to move an object, then move it some more
 \[p \rightarrow T(p) \rightarrow S(T(p)) = (S \circ T)(p) \]

• We need to represent \(S \circ T \) (“S compose T”)
 – and would like to use the same representation as for \(S \) and \(T \)

• Translation easy:
 \[T(p) = p + u_T; S(p) = p + u_S \]
 \[(S \circ T)(p) = p + (u_T + u_S) \]

• Translation by \(u_T \) then by \(u_S \) is translation by \(u_T + u_S \)
 – commutative!
Composing transformations

• Linear transformations also straightforward

\[T(p) = M_T p; \quad S(p) = M_S p \]

\[(S \circ T)(p) = M_S M_T p\]

• Transforming first by \(M_T \) then by \(M_S \) is the same as transforming by \(M_S M_T \)
 – only sometimes commutative
 • e.g. rotations & uniform scales
 • e.g. non-uniform scales w/o rotation
 – Note \(M_S M_T \), or \(S \circ T \), is \(T \) first, then \(S \)
Combining linear with translation

- Need to use both in single framework
- Can represent arbitrary seq. as $T(p) = Mp + u$

 $- T(p) = M_T p + u_T$

 $- S(p) = M_S p + u_S$

 $(S \circ T)(p) = M_S(M_T p + u_T) + u_S$

 $= (M_SM_T)p + (M_Su_T + u_S)$

 e.g. $S(T(0)) = S(u_T)$

- Transforming by M_T and u_T, then by M_S and u_S, is the same as transforming by M_SM_T and $u_S + M_Su_T$

 - This will work but is a little awkward
Homogeneous coordinates

- A trick for representing the foregoing more elegantly
- Extra component w for vectors, extra row/column for matrices
 - for affine, can always keep $w = 1$
- Represent linear transformations with dummy extra row and column

\[
\begin{bmatrix}
 a & b & 0 \\
 c & d & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
=
\begin{bmatrix}
 ax + by \\
 cx + dy \\
 1
\end{bmatrix}
\]
Homogeneous coordinates

• Represent translation using the extra column

\[
\begin{bmatrix}
1 & 0 & t \\
0 & 1 & s \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
=
\begin{bmatrix}
x + t \\
y + s \\
1
\end{bmatrix}
\]
Homogeneous coordinates

• Composition just works, by 3x3 matrix multiplication

\[
\begin{bmatrix}
M_S & u_S \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
M_T & u_T \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
p \\
1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
(M_SM_T)p + (M_Su_T + u_S) \\
1
\end{bmatrix}
\]

• This is exactly the same as carrying around \(M \) and \(u \)
 – but cleaner
 – and generalizes in useful ways as we’ll see later
Affine transformations

• The set of transformations we have been looking at is known as the “affine” transformations
 – straight lines preserved; parallel lines preserved
 – ratios of lengths along lines preserved (midpoints preserved)
Affine change of coordinates

• Six degrees of freedom

\[
\begin{bmatrix}
a_1 & a_2 & a_3 \\
a_4 & a_5 & a_6 \\
0 & 0 & 1
\end{bmatrix}
\]

or

\[
\begin{bmatrix}
u \\
v \\
p
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]
Affine change of coordinates

- Coordinate frame: point plus basis
- Interpretation: transformation changes representation of point from one basis to another
- “Frame to canonical” matrix has frame in columns
 - takes points represented in frame
 - represents them in canonical basis
 - e.g. [0 0], [1 0], [0 1]
- Seems backward but bears thinking about
Rigid motions

- A transform made up of only translation and rotation is a *rigid motion* or a *rigid body transformation*
- The linear part is an orthonormal matrix

\[
R = \begin{bmatrix} Q & u \\ 0 & 1 \end{bmatrix}
\]

- Inverse of orthonormal matrix is transpose
 - so inverse of rigid motion is easy:

\[
R^{-1}R = \begin{bmatrix} Q^T & -Q^Tu \\ 0 & 1 \end{bmatrix} \begin{bmatrix} Q & u \\ 0 & 1 \end{bmatrix}
\]
Transforming points and vectors

• Recall distinction points vs. vectors
 – vectors are just offsets (differences between points)
 – points have a location
 • represented by vector offset from a fixed origin
• Points and vectors transform differently
 – points respond to translation; vectors do not

\[\mathbf{v} = \mathbf{p} - \mathbf{q} \]
\[T(\mathbf{x}) = M \mathbf{x} + \mathbf{t} \]
\[T(\mathbf{p} - \mathbf{q}) = M \mathbf{p} + \mathbf{t} - (M \mathbf{q} + \mathbf{t}) \]
\[= M (\mathbf{p} - \mathbf{q}) + (\mathbf{t} - \mathbf{t}) = M \mathbf{v} \]
Affine Composition

• Composition just works, by 3x3 matrix multiplication

\[
\begin{bmatrix}
M_S & u_S \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
M_T & u_T \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
p \\
1
\end{bmatrix}
=
\begin{bmatrix}
(M_SM_T)p + (M_Su_T + u_S) \\
1
\end{bmatrix}
\]
Affine Composition Example: Rotation about not-the-origin

• Want to rotate about a particular point
 – could work out formulas directly…

• Know how to rotate about the origin
 – so translate that point to the origin

\[M = T^{-1}RT \]
Affine Composition Example: Rotation about not-the-origin

- Want to rotate about a particular point
 - could work out formulas directly…
- Know how to rotate about the origin
 - so translate that point to the origin

\[M = T^{-1}RT \]
Affine Composition Example: Rotation about not-the-origin

• Want to rotate about a particular point
 – could work out formulas directly…
• Know how to rotate about the origin
 – so translate that point to the origin

\[M = T^{-1}RT \]
Affine Composition Example: Rotation about not-the-origin

- Want to rotate about a particular point
 - could work out formulas directly…
- Know how to rotate about the origin
 - so translate that point to the origin

\[M = T^{-1}RT \]
Similarity Transformations

• When we move an object to the canonical frame to apply a transformation, we are changing coordinates – the transformation is easy to express in object’s frame – so define it there and transform it

\[T_e = FT_F F^{-1} \]

– \(T_e \) is the transformation expressed wrt. \(\{e_1, e_2\} \)

– \(T_F \) is the transformation expressed in natural frame

– \(F \) is the frame-to-canonical matrix \([u \ v \ p]\)

• This is a similarity transformation