Computer Graphics

Lecture 12 **Transformation Matrices Homogeneous Coordinates**

Computer Graphics

Lecture 12 **2D Transformation Matrices Homogeneous Coordinates**

 Reminder: fill out the feedback survey by tonight for 5 points of HW credit.

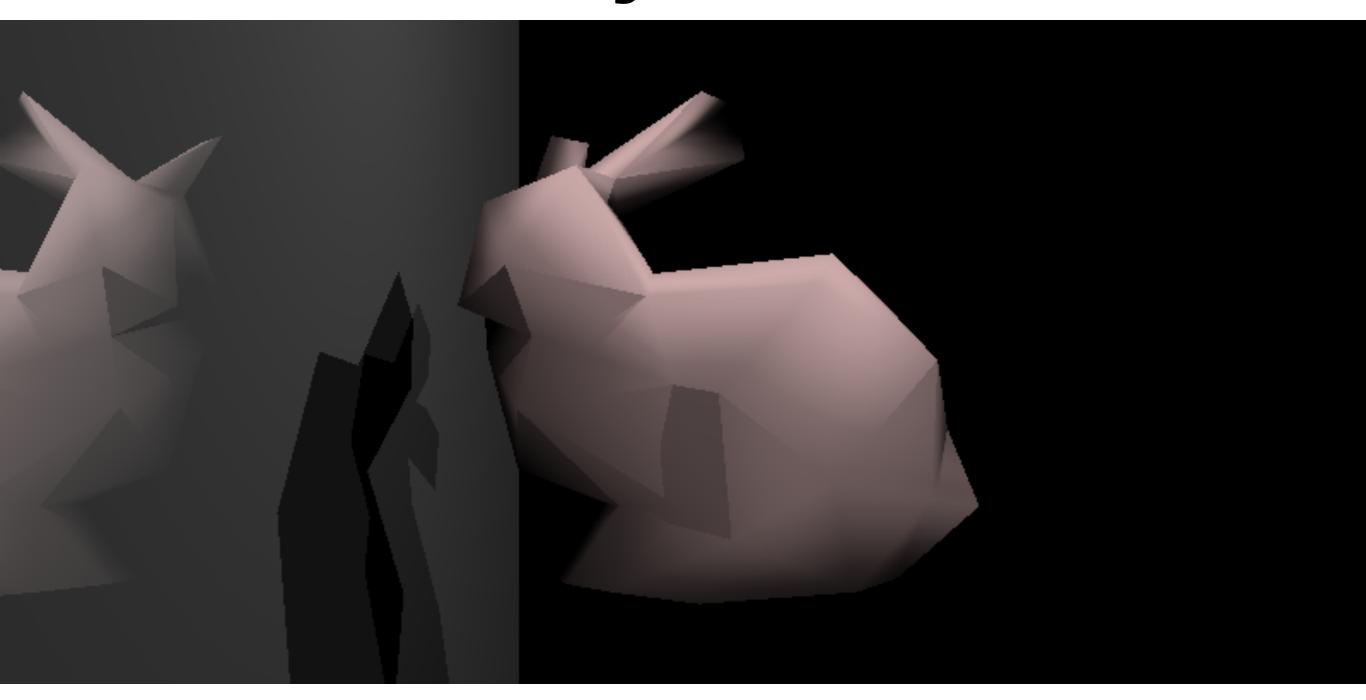
Deadline is now set to 10:30.

- Reminder: fill out the feedback survey by tonight for 5 points of HW credit.
 Deadline is now set to 10:30.
- A1 grades are out. If you lost more than 10 points, you can resubmit for half credit back.
 Resubmit deadline is Sunday 2/16 10pm.

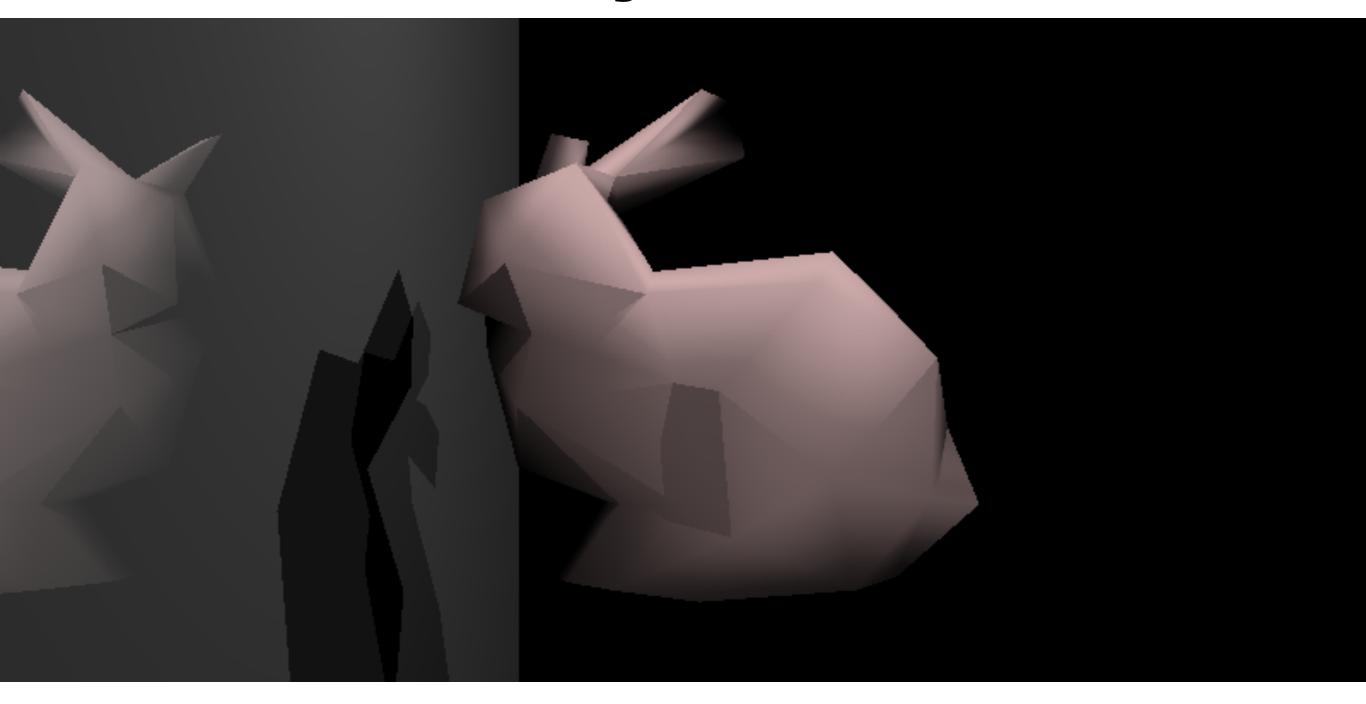
- Reminder: fill out the feedback survey by tonight for 5 points of HW credit.
 Deadline is now set to 10:30.
- A1 grades are out. If you lost more than 10 points, you can resubmit for half credit back.
 Resubmit deadline is Sunday 2/16 10pm.
- HW1 question 6.5 (last part):

- Reminder: fill out the feedback survey by tonight for 5 points of HW credit.
 Deadline is now set to 10:30.
- A1 grades are out. If you lost more than 10 points, you can resubmit for half credit back.
 Resubmit deadline is Sunday 2/16 10pm.
- HW1 question 6.5 (last part):
 - You may ssume the angle at a is <90, or not. I'll accept either answer. See also note on <u>Piazza</u>.

Bunny is sad.



Bunny is sad.



Bunny is sad because it can't move.

Today: Make bunny happy

- How can we manipulate objects in the scene to
 - put them in the right position?
 - scale them to the right size?
 - orient them in the right direction?

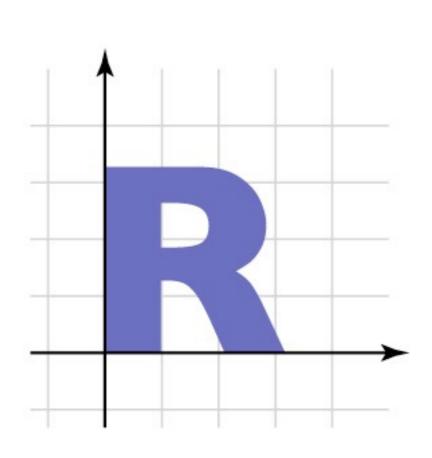
Today: Make bunny happy

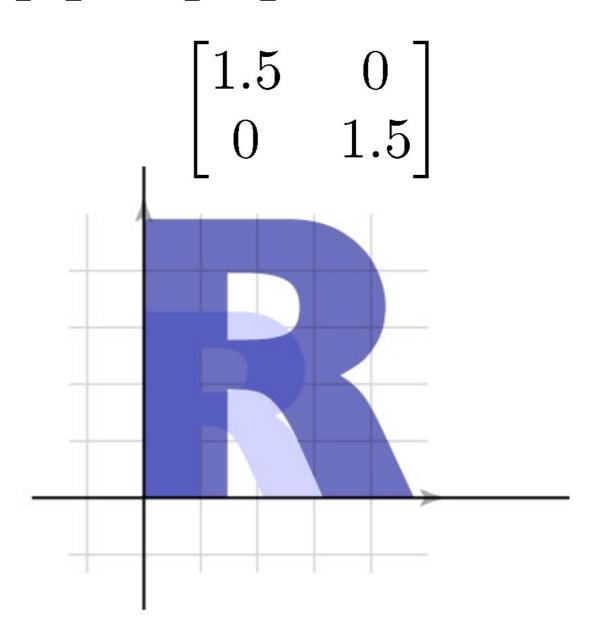
- How can we manipulate objects in the scene to
 - put them in the right position?
 - scale them to the right size?
 - orient them in the right direction?

Our answer: matrices.

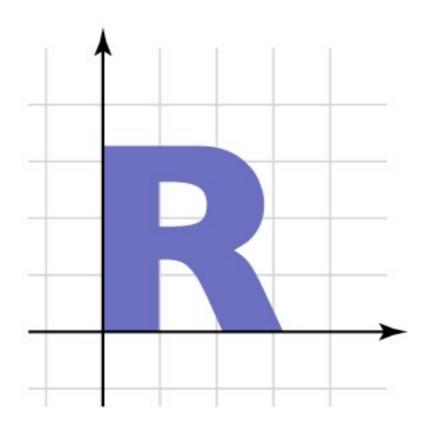
2x2 Matrix Transformations

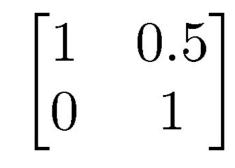
• Uniform scale
$$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} sx \\ sy \end{bmatrix}$$

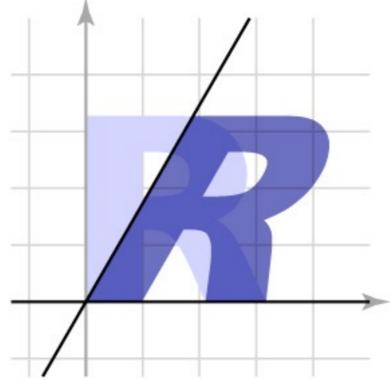




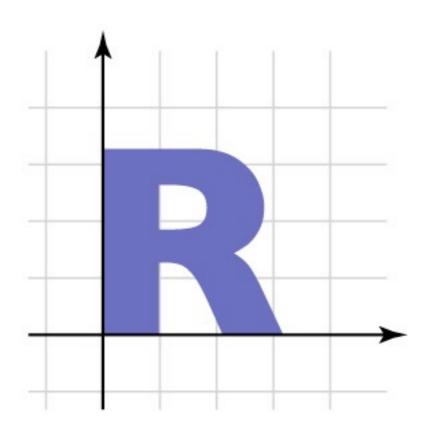
• Shear
$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + ay \\ y \end{bmatrix}$$

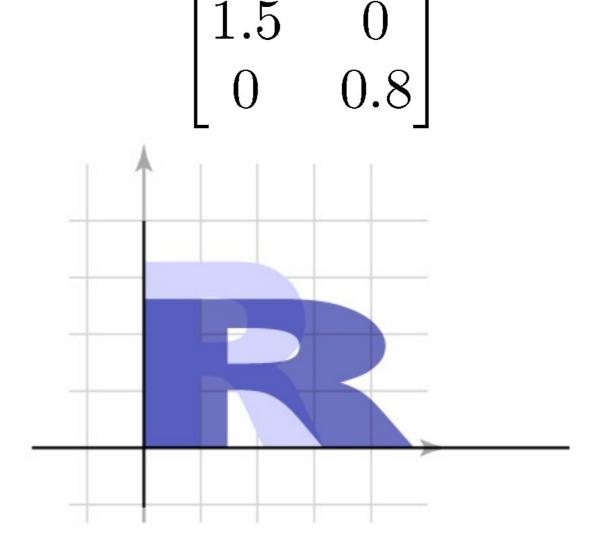




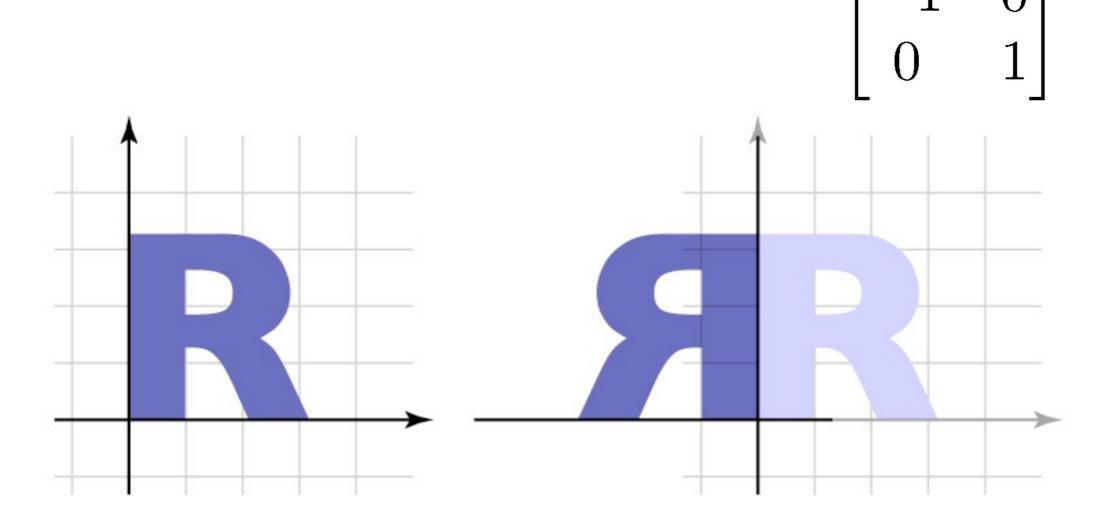


• Nonuniform scale
$$\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \end{bmatrix}$$

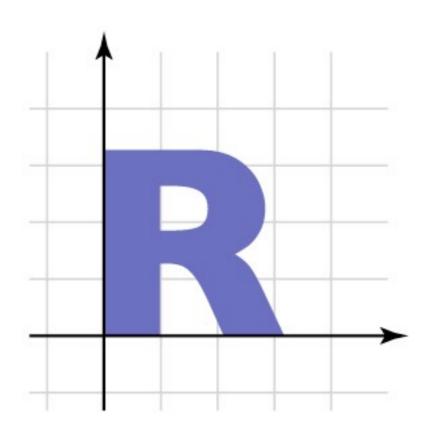




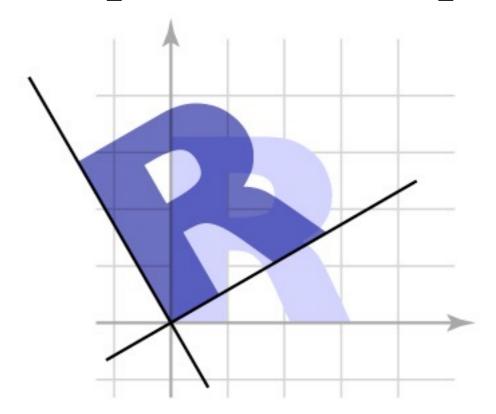
- Reflection
 - can consider it a special case of nonuniform scale



• Rotation
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$



 $\begin{bmatrix} 0.866 & -0.5 \\ 0.5 & 0.866 \end{bmatrix}$



Composing transformations

Want to move an object, then move it some more

$$\mathbf{p} \to T(\mathbf{p}) \to S(T(\mathbf{p})) = (S \circ T)(\mathbf{p})$$

- We need to represent S o T ("S compose T")
 - and would like to use the same representation as for S and T
- Translation easy

$$T(\mathbf{p}) = \mathbf{p} + \mathbf{u}_T; S(\mathbf{p}) = \mathbf{p} + \mathbf{u}_S$$

- Ti $(S \circ T)(\mathbf{p}) = \mathbf{p} + (\mathbf{u}_T + \mathbf{u}_S)$ on by \mathbf{u}_T + \mathbf{u}_S
 - commutative!

Composing transformations

Linear transformations also straightforward

$$T(\mathbf{p}) = M_T \mathbf{p}; S(\mathbf{p}) = M_S \mathbf{p}$$

 $(S \circ T)(\mathbf{p}) = M_S M_T \mathbf{p}$

- Transforming first by M_T then by M_S is the same as transforming by M_SM_T
 - only sometimes commutative
 - e.g. rotations & uniform scales
 - e.g. non-uniform scales w/o rotation
 - Note M_SM_T , or S o T, is T first, then S

Combining linear with translation

- Need to use both in single framework
- Can represent arbitrary seq. as $T(\mathbf{p}) = M\mathbf{p} + \mathbf{u}$ $-T(\mathbf{p}) = M_T\mathbf{p} + \mathbf{u}_T$ $-S(\mathbf{p}) = M_S\mathbf{p} + \mathbf{u}_S$

$$\begin{array}{l}
-(S \circ T)(\mathbf{p}) = M_S(M_T \mathbf{p} + \mathbf{u}_T) + \mathbf{u}_S \\
= (M_S M_T) \mathbf{p} + (M_S \mathbf{u}_T + \mathbf{u}_S) \\
-\mathbf{e.e.} & \text{Corrections}
\end{array}$$

- $S(T(0)) = S(\mathbf{u}_T)$
- Transforming by M_T and \mathbf{u}_T , then by M_S and \mathbf{u}_S , is the same as transforming by M_SM_T and $\mathbf{u}_S + M_S\mathbf{u}_T$
 - This will work but is a little awkward

Homogeneous coordinates

- A trick for representing the foregoing more elegantly
- Extra component w for vectors, extra row/column for matrices
 - for affine, can always keep w = 1
- Represent linear transformations with dummy extra row and column

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \\ 1 \end{bmatrix}$$

Homogeneous coordinates

Represent translation using the extra column

$$egin{bmatrix} 1 & 0 & t \ 0 & 1 & s \ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \ y \ 1 \end{bmatrix} = egin{bmatrix} x+t \ y+s \ 1 \end{bmatrix}$$

Homogeneous coordinates

Composition just works, by 3x3 matrix multiplication

$$\begin{bmatrix} M_S & \mathbf{u}_S \\ 0 & 1 \end{bmatrix} \begin{bmatrix} M_T & \mathbf{u}_T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} (M_S M_T) \mathbf{p} + (M_S \mathbf{u}_T + \mathbf{u}_S) \\ 1 \end{bmatrix}$$

- This is exactly the same as carrying around M and u
 - but cleaner
 - and generalizes in useful ways as we'll see later

Affine transformations

- The set of transformations we have been looking at is known as the "affine" transformations
 - straight lines preserved; parallel lines preserved
 - ratios of lengths along lines preserved (midpoints preserved)

