-
S
E - |
M

Computer Graphics

Lecture 11
Acceleration Structures
Advanced Ray Tracing

Announcements

Announcements

e Feedback survey out this afternoon - please
respond by Monday night (10pm)})

Announcements

e Feedback survey out this afternoon - please
respond by Monday night (10pm)})

e A1 grading should be done by Monday.

Announcements

e Feedback survey out this afternoon - please
respond by Monday night (10pm)})

e A1 grading should be done by Monday.

e Final projects - proposals will be due in ~2
weeks; start thinking about topics now.
More on this later.

Today

* A high-level overview of what comes next in ray
tracing.

e Useful for A2 extensions and/or final project ideas.

* Not getting into gory detall -
see the book references on the slides.

Barycentric ray-triangle intersection

* Every point on the plane can be written in the form:
a+ f(b—a)+~v(c—a)
for some numbers 5 and”.
* If the point is also on the ray then it is
p +td

for some number 1.
* Set them equal: 3 linear equations in 3 variables

p+itd=a+ G(b—a)+vy(c—a)

...solve them to get 7, 5,and " all at once!

Barycentric ray-triangle intersection

p+td=a—+ pG(b—a)+vy(c—a)
fla—b)+~y(a—c)+itd=a—p
g
[a—b a—cC d] Y :[a—p]
t
T, —Tp Tq—Te Zql| [B _ata—a:p_
Ya — Yb Ya — Ye Yd Y1 = | Ya — Yp
Za — 2 Ra — Rc Zd] _t_ | Za — Zp |

e Thisis alinear system: Ax =D
e \arious ways to solve, but a fast one uses Cramer's rule.

e See 4.4.2 for the TL;DR formula
e See 5.3.2 for an explanation of Cramer's rule

Ray tracing Is expensive.

for each pixel:
for each triangle:
compute barycentric intersection

How expensive? Let's (informally) count some FLOPs.
floating-point operations

Last time: barycentric ray-triangle

Intersection
p+td

B(a—b)+~(a—c)

h—b a—c ﬂ

Lg —Lp Lg

Ya — Yb Ya
Za — <b <a

Pre-calculate
entries and
rename:

— Le (g

— Ye Yd
— Z¢ Zd

a d g
b e h
c [1]

+td

a+ f(b—a)+~y(c—a)

a—p
a—p)
T, — Ty
Ya — Yp
_ZCL — Zp
- i
k

O subtractions

Barycentric Ray-Triangle
Intersection

Cramer’s rule gives us

5add/sub g j(ei—hf)+k(gf—di)+1(dh—eg)

10 mult/div M

i(ak—jb)+h(jc—al)+g(bl—kc)
y= - ,

)

f(ak—jb)+e(jc—al)+d(bl—kc)

= v :

where |
Reusing from above:

S3mult M=a(ei — hf)+b(gf — di)+c(dh — eg).

Barycentric Ray-Triangle
Intersection

Cramer’s rule gives us

5add/sub g j(ei—hf)+k(gf—di)+i(dh—eg)

10 mult/div M |
i(ak—jb)+h(jc—al)+g(bl—kc)
Y= - ,
Total: 27 FLOPs b f(ak—jb)+e(jc—al)+d(bl—kc)
— Vi :

where |
Reusing from above:

S3mult M=a(ei — hf)+b(gf — di)+c(dh — eg).

Barycentric Ray-Triangle
Intersection

Cramer’s rule gives us

5add/sub g j(ei—hf)+k(gf—di)+1(dh—eg)

10 mult/div M |
i(ak—jb)+h(jc—al)+g(bl—kc)
y= - ,
Total: 27 FLOPs b f(ak—jb)+e(jc—al)+d(bl—kc)
— Vi :

where |
Reusing from above:

Smult M=a(ei — hf)+b(gf — di)+c(dh — eg).

Assume, conservatively that on average, we calculate § and
determine that it doesn't intersect (because g <0 or 5 > I)

Ray tracing Is expensive.

for each pixel: 720p =1280x720 =921600 pixels

for each triangle: bunny: 114 triangles
compute barycentric intersection 27 flops

= 2,836,684,300
= 2.8 GFLOPs

A typical laptop can currently can do about 100-200 GFLOPS
gigaflops per second

Ray tracing Is expensive.

for each pixel: 720p =1280x720 =921600 pixels

for each triangle: bunny: 114 triangles
compute barycentric intersection 27 flops

= 2,836,684,300
= 2.8 GFLOPs

A typical laptop can currently can do about 100-200 GFLOPS
gigaflops per second

https://polycount.com/discussion/141061/polycounts-in-next-
gen-games-thread

https://polycount.com/discussion/141061/polycounts-in-next-gen-games-thread
https://polycount.com/discussion/141061/polycounts-in-next-gen-games-thread

Ray tracing Is expensive.

for each pixel: 720p =1280x720 =921600 pixels

for each triangle: bunny: 114 triangles
compute barycentric intersection 27 flops

= 2,836,684,300
= 2.8 GFLOPs

A typical laptop can currently can do about 100-200 GFLOPS
gigaflops per second

so what's the problem?

https://polycount.com/discussion/141061/polycounts-in-next-
gen-games-thread

https://polycount.com/discussion/141061/polycounts-in-next-gen-games-thread
https://polycount.com/discussion/141061/polycounts-in-next-gen-games-thread

Ray tracing Is expensive.

for each pixel: 720p =1280x720 =921600 pixels

for each triangle: computer game model: 40k triangles
compute barycentric intersection 27 flops

= 995,328,000,000
= 995 GFLOPs
~=1TFLOP

Ray tracing Is expensive.

for each pixel: 720p =1280x720 =921600 pixels

for each triangle: computer game model: 40k triangles
compute barycentric intersection 27 flops

= 995,328,000,000
= 995 GFLOPs
~=1TFLOP

Want to render this for an interactive game?

Ray tracing Is expensive.

for each pixel: 720p =1280x720 =921600 pixels

for each triangle: computer game model: 40k triangles
compute barycentric intersection 27 flops

= 995,328,000,000
= 995 GFLOPs
~=1TFLOP

Want to render this for an interactive game?
Simply do this 30+ times per second.

What can we do?

What can we do?

e Optimize the inner-inner loop: more efficient
intersection routines

What can we do?

e Optimize the inner-inner loop: more efficient
intersection routines

e Carefully reduce triangle count

What can we do?

e Optimize the inner-inner loop: more efficient
intersection routines

e Carefully reduce triangle count

these only go so far...

What can we do?

e Optimize the inner-inner loop: more efficient
intersection routines

e Carefully reduce triangle count

these only go so far...

e Intersect fewer things

* Most ray intersections don't hit the object!

e Basic strategy: efficiently find big chunks of the scene that
definitely don't intersect your ray

Chapter 12.3.1

Bounding Volumes

* Quick way to avoid intersections: bound object with a
simple volume

—Object is fully contained in the volume
—If it doesn’t hit the volume, it doesn’t hit the object
—So test bvol first, then test object if it hits

89, Fig 4.5]

[Glassner

sphere axis-aligned box oriented box

Chapter 12.3.1

Bounding Volumes

Algorithm: 1f ray intersects bounding volume:
1f ray intersects object:
do stuff

[Glassner 89, Fig 4.5]

sphere axis-aligned box oriented box

Chapter 12.3.1

Bounding Volumes

Algorithm: 1f ray intersects bounding volume:
1f ray intersects object:
do stuff

Cost: more for hits and near misses, but less for far misses

s this worth it?
® bvol intersection should be much cheaper than object intersection
e works best for simple bvols, complicated objects
® bvol should bound object as tightly as possible

Tradeoff: efficient intersection vs tightness

Chapter 12.3.1

Bounding Volume
Intersection

Exercise: In 2D, devise an algorithm to intersect
a ray with an axis-aligned bounding box.

Inputs:

® ray (p and d)
® left x

® right x

® left y axis-aligned box
® right y

Output: boolean, whether ray hits box

89, Fig 4.5]

[Glassner

Chapter 12.3.1

Bounding Volumes

Algorithm: 1f ray intersects bounding volume:
1f ray intersects object:
do stuff

Cost: more for hits and near misses, but less for far misses

s this worth it?
® bvol intersection should be much cheaper than object intersection
e works best for simple bvols, complicated objects
® bvol should bound object as tightly as possible

Tradeoff: efficient intersection vs tightness

Chapter 12.3.2

Bounding Volume Hierarchy

Bvols around objects might help
Bvols around groups of objects will help

Bvols around parts of complex objects will help

|dea: use bounding volumes all the way from the whole
scene down to groups of a few objects

Building the Hierarchy

e |deally: bound nearby clusters of objects

* Practical solution: partition along axis

BVH construction example

BVH construction example

BVH construction example

»
NS
>

hd

) 4

BVH construction example

© 2014 Steve Marschner * 19

BVH ray-tracing example

© 2014 Steve Marschner * 20

BVH ray-tracing example

© 2014 Steve Marschner * 20

BVH ray-tracing example

\‘\

© 2014 Steve Marschner ¢ 20

BVH ray-tracing example

\‘\

© 2014 Steve Marschner * 20

BVH ray-tracing example

\‘\

© 2014 Steve Marschner ¢ 20

BVH ray-tracing example

\‘\

© 2014 Steve Marschner ¢ 20

BVH ray-tracing example

“\

© 2014 Steve Marschner ¢ 20

BVH ray-tracing example

© 2014 Steve Marschner * 20

BVH ray-tracing example

© 2014 Steve Marschner * 20

BVH ray-tracing example

© 2014 Steve Marschner * 20

Implementation

e New kind of object: BoundedObiject

e stores references to contained objects
(can be BoundedObjects themselves!)

* New ray intersect routine:

* |ntersect with each child; if any, return closest.

Chapter 12.3.3

Other Approaches:

e Uniform Space Subdivision

\| |
ray :
111
1 kT ! |
| | T %‘ Lt *‘ t | '
¥ | | | [| i 1

Uniform Space Subdivision

%:g.
VoA
-~ »

* Grid cells store references to overlapping objects

Compute the grid cells
Intersected by a ray

Constant offset between cell edge
Intersections in each dimension:

Ok, what else can't we do?

e Rotate, scale, shear objects - transformations
(more on this next week, and in 13.2)

e Render transparent things - transmission and
refraction (Ch 13.1)

e Intersect more kinds of objects - Constructive
Solid Geometry (Ch

e Area light sources, soft shadows, depth of field
- distribution ray tracing (Ch 13.4)

. 13.2
Transformations and

Instancing A

e Next week we'll talk about

how to transform objects:

. 13.2
Transformations and

Instancing A

1. sC 111

Next week we'll talk about
how to transform objects: @0 29

When ray tracing, we
can alternatively
transform the rays:

. 13.2
Transformations and

Instancing A

1. scale

Next week we'll talk about
how to transform obijects: @0 @

When ray tracing, we
can alternatively
transform the rays:

Ray M~la+¢tM'b

Same idea allows us to include multiple instances of the same object in a scene.

13.1
Transparency and Refraction

Our framework assumes surfaces reflect light.

What if they don't?

13.1

Basically, physics

e Laws of physics govern how light transmits
through dielectric surfaces. Snell's law:

nsinf=n; sin ¢

13.1

Basically, physics

e Laws of physics govern how light transmits
through dielectric surfaces. Snell's law:

nsinf=n; sin ¢

Similar to mirror reflection:
When light hits a special kind of
surface, shoot a new ray in new
direction.

Constructive Solid
Geometry

e Compose objects from other objects using

@

set operations:

C

cCuUS
(union)

)

S-C

(difference)

C

)

C+S
(difference)

GO

(intersection)

13.3

Constructive Solid e

Geometry s

* Intersections yield f
intervals of t

e Perform the set ey - i
pperatlons on thosg T
intervals to determine k=l B

: : : C
Intersection point. B H

13.4

Distribution Ray Tracing

* Problem: jagged object and shadow edges

13.4

Distribution Ray Tracing .

* Problem: jagged object and shadow edges

13.4

we want this

we have this

13.4

we want this

we have this

|dea: supersample rays within each pixel.

13.4

we want this

we have this

|dea: supersample rays within each pixel.

13.4

Distribution Ray Tracing

* Problem: area light sources

global
Hlumination

soft shadows

13.4

Distribution Ray Tracing

* Problem: area light sources

global
Hlumination

soft shadows

13.4

Distribution Ray Tracing

* Problem: area light sources

global
Hlumination

soft shadows

Next week:

* Transformations - positioning, scaling,
rotating, shearing, etc. of objects and
cameras in the scene.

* Intro to object-order rendering.

