
Computer Graphics
Lecture 11

Acceleration Structures
Advanced Ray Tracing

Announcements

Announcements
• Feedback survey out this afternoon - please

respond by Monday night (10pm)

Announcements
• Feedback survey out this afternoon - please

respond by Monday night (10pm)

• A1 grading should be done by Monday.

Announcements
• Feedback survey out this afternoon - please

respond by Monday night (10pm)

• A1 grading should be done by Monday.

• Final projects - proposals will be due in ~2
weeks; start thinking about topics now.
More on this later.

Today
• A high-level overview of what comes next in ray

tracing.

• Useful for A2 extensions and/or final project ideas.

• Not getting into gory detail -  
see the book references on the slides.

• Every point on the plane can be written in the form:  
 
 
for some numbers β and .

• If the point is also on the ray then it is  
 
 
for some number t.

• Set them equal: 3 linear equations in 3 variables  
 
 
…solve them to get t, β, and all at once!

p+ td

a+ �(b� a) + �(c� a)

p+ td = a+ �(b� a) + �(c� a)

�

�

Barycentric ray-triangle intersection

Barycentric ray-triangle intersection
p+ td = a+ �(b� a) + �(c� a)

�(a� b) + �(a� c) + td = a� p

⇥
a� b a� c d

⇤
2

4
�
�
t

3

5 =
⇥
a� p

⇤

2

4
xa � xb xa � xc xd

ya � yb ya � yc yd
za � zb za � zc zd

3

5

2

4
�
�
t

3

5 =

2

4
xa � xp

ya � yp
za � zp

3

5

• This is a linear system: Ax = b

• Various ways to solve, but a fast one uses Cramer's rule.

• See 4.4.2 for the TL;DR formula

• See 5.3.2 for an explanation of Cramer's rule

Ray tracing is expensive.
for each pixel:
 for each triangle:
 compute barycentric intersection

How expensive? Let's (informally) count some FLOPs.
floating-point operations

Last time: barycentric ray-triangle
intersection

p+ td = a+ �(b� a) + �(c� a)

�(a� b) + �(a� c) + td = a� p

⇥
a� b a� c d

⇤
2

4
�
�
t

3

5 =
⇥
a� p

⇤

2

4
xa � xb xa � xc xd

ya � yb ya � yc yd
za � zb za � zc zd

3

5

2

4
�
�
t

3

5 =

2

4
xa � xp

ya � yp
za � zp

3

5

Pre-calculate

entries and
rename:

9 subtractions

Barycentric Ray-Triangle
Intersection

5 add/sub

10 mult/div

Reusing from above: 
3 mult

Barycentric Ray-Triangle
Intersection

5 add/sub

10 mult/div

Reusing from above: 
3 mult

Total: 27 FLOPs

Barycentric Ray-Triangle
Intersection

5 add/sub

10 mult/div

Reusing from above: 
3 mult

Assume, conservatively that on average, we calculate β and
determine that it doesn't intersect (because β < 0 or β > 1)

Total: 27 FLOPs

Ray tracing is expensive.
for each pixel:
 for each triangle:
 compute barycentric intersection 27 flops

720p = 1280×720 = 921600 pixels

= 2,836,684,800

= 2.8 GFLOPs

A typical laptop can currently can do about 100-200 GFLOPS
gigaflops per second

bunny: 114 triangles

Ray tracing is expensive.
for each pixel:
 for each triangle:
 compute barycentric intersection 27 flops

720p = 1280×720 = 921600 pixels

= 2,836,684,800

= 2.8 GFLOPs

A typical laptop can currently can do about 100-200 GFLOPS
gigaflops per second

https://polycount.com/discussion/141061/polycounts-in-next-
gen-games-thread

bunny: 114 triangles

https://polycount.com/discussion/141061/polycounts-in-next-gen-games-thread
https://polycount.com/discussion/141061/polycounts-in-next-gen-games-thread

Ray tracing is expensive.
for each pixel:
 for each triangle:
 compute barycentric intersection 27 flops

720p = 1280×720 = 921600 pixels

= 2,836,684,800

= 2.8 GFLOPs

A typical laptop can currently can do about 100-200 GFLOPS
gigaflops per second

so what's the problem?
https://polycount.com/discussion/141061/polycounts-in-next-

gen-games-thread

bunny: 114 triangles

https://polycount.com/discussion/141061/polycounts-in-next-gen-games-thread
https://polycount.com/discussion/141061/polycounts-in-next-gen-games-thread

Ray tracing is expensive.
for each pixel:
 for each triangle:
 compute barycentric intersection 27 flops

720p = 1280×720 = 921600 pixels

= 995,328,000,000

= 995 GFLOPs

~= 1 TFLOP

computer game model: 40k triangles

Ray tracing is expensive.
for each pixel:
 for each triangle:
 compute barycentric intersection 27 flops

720p = 1280×720 = 921600 pixels

= 995,328,000,000

= 995 GFLOPs

~= 1 TFLOP

computer game model: 40k triangles

Want to render this for an interactive game?

Ray tracing is expensive.
for each pixel:
 for each triangle:
 compute barycentric intersection 27 flops

720p = 1280×720 = 921600 pixels

= 995,328,000,000

= 995 GFLOPs

~= 1 TFLOP

computer game model: 40k triangles

Want to render this for an interactive game?
Simply do this 30+ times per second.

What can we do?

What can we do?
• Optimize the inner-inner loop: more efficient

intersection routines

What can we do?
• Optimize the inner-inner loop: more efficient

intersection routines

• Carefully reduce triangle count

What can we do?
• Optimize the inner-inner loop: more efficient

intersection routines

• Carefully reduce triangle count
these only go so far...

What can we do?
• Optimize the inner-inner loop: more efficient

intersection routines

• Carefully reduce triangle count

• Intersect fewer things

• Most ray intersections don't hit the object!

• Basic strategy: efficiently find big chunks of the scene that
definitely don't intersect your ray

these only go so far...

Bounding Volumes
• Quick way to avoid intersections: bound object with a

simple volume
–Object is fully contained in the volume
–If it doesn’t hit the volume, it doesn’t hit the object
–So test bvol first, then test object if it hits

[G
la

ss
ne

r
89

, F
ig

 4
.5

]

sphere axis-aligned box oriented box

Chapter 12.3.1

Bounding Volumes
Algorithm:

[G
la

ss
ne

r
89

, F
ig

 4
.5

]

sphere axis-aligned box oriented box

if ray intersects bounding volume:
 if ray intersects object:
 do stuff

Chapter 12.3.1

Bounding Volumes
Algorithm: if ray intersects bounding volume:

 if ray intersects object:
 do stuff

Cost: more for hits and near misses, but less for far misses

Is this worth it?

• bvol intersection should be much cheaper than object intersection

• works best for simple bvols, complicated objects

• bvol should bound object as tightly as possible

Tradeoff: efficient intersection vs tightness

Chapter 12.3.1

Bounding Volume
Intersection

Exercise: In 2D, devise an algorithm to intersect
a ray with an axis-aligned bounding box.

Inputs:

• ray (p and d)
• left_x
• right_x
• left_y
• right_y

Output: boolean, whether ray hits box

[G
la

ss
ne

r
89

, F
ig

 4
.5

]

axis-aligned box

Chapter 12.3.1

Bounding Volumes
Algorithm: if ray intersects bounding volume:

 if ray intersects object:
 do stuff

Cost: more for hits and near misses, but less for far misses

Is this worth it?

• bvol intersection should be much cheaper than object intersection

• works best for simple bvols, complicated objects

• bvol should bound object as tightly as possible

Tradeoff: efficient intersection vs tightness

Chapter 12.3.1

Bounding Volume Hierarchy
• Bvols around objects might help
• Bvols around groups of objects will help
• Bvols around parts of complex objects will help
• Idea: use bounding volumes all the way from the whole

scene down to groups of a few objects

Chapter 12.3.2

Building the Hierarchy
• Ideally: bound nearby clusters of objects

• Practical solution: partition along axis

© 2014 Steve Marschner •

BVH construction example

 19

© 2014 Steve Marschner •

BVH construction example

 19

© 2014 Steve Marschner •

BVH construction example

 19

© 2014 Steve Marschner •

BVH construction example

 19

© 2014 Steve Marschner •

BVH ray-tracing example

 20

© 2014 Steve Marschner •

BVH ray-tracing example

 20

© 2014 Steve Marschner •

BVH ray-tracing example

 20

© 2014 Steve Marschner •

BVH ray-tracing example

 20

© 2014 Steve Marschner •

BVH ray-tracing example

 20

© 2014 Steve Marschner •

BVH ray-tracing example

 20

© 2014 Steve Marschner •

BVH ray-tracing example

 20

© 2014 Steve Marschner •

BVH ray-tracing example

 20

© 2014 Steve Marschner •

BVH ray-tracing example

 20

© 2014 Steve Marschner •

BVH ray-tracing example

 20

Implementation
• New kind of object: BoundedObject

• stores references to contained objects 
(can be BoundedObjects themselves!)

• New ray_intersect routine:

• Intersect with each child; if any, return closest.

Other Approaches:
• Uniform Space Subdivision

Chapter 12.3.3

Uniform Space Subdivision

• Grid cells store references to overlapping objects

Compute the grid cells
intersected by a ray

Constant offset between cell edge
intersections in each dimension:

Ok, what else can't we do?
• Rotate, scale, shear objects - transformations

(more on this next week, and in 13.2)

• Render transparent things - transmission and
refraction (Ch 13.1)

• Intersect more kinds of objects - Constructive
Solid Geometry (Ch

• Area light sources, soft shadows, depth of field
- distribution ray tracing (Ch 13.4)

Transformations and
Instancing

• Next week we'll talk about
how to transform objects:

13.2

Transformations and
Instancing

Next week we'll talk about
how to transform objects:

When ray tracing, we
can alternatively
transform the rays:

13.2

Transformations and
Instancing

Next week we'll talk about
how to transform objects:

When ray tracing, we
can alternatively
transform the rays:

Same idea allows us to include multiple instances of the same object in a scene.

13.2

Transparency and Refraction
Our framework assumes surfaces reflect light.

What if they don't?

13.1

Basically, physics
• Laws of physics govern how light transmits

through dielectric surfaces. Snell's law:

13.1

Basically, physics
• Laws of physics govern how light transmits

through dielectric surfaces. Snell's law:

Similar to mirror reflection:
When light hits a special kind of
surface, shoot a new ray in new
direction.

13.1

Constructive Solid
Geometry

• Compose objects from other objects using
set operations:

13.3

Constructive Solid
Geometry

• Intersections yield
intervals of t

• Perform the set
operations on those
intervals to determine
intersection point.

13.3

Distribution Ray Tracing
• Problem: jagged object and shadow edges

13.4

Distribution Ray Tracing
• Problem: jagged object and shadow edges

13.4

we have this

we want this

13.4

we have this

we want this

Idea: supersample rays within each pixel.

13.4

we have this

we want this

Idea: supersample rays within each pixel.

13.4

Distribution Ray Tracing
• Problem: area light sources

global
illumination

soft shadows

13.4

Distribution Ray Tracing
• Problem: area light sources

global
illumination

soft shadows

13.4

Distribution Ray Tracing
• Problem: area light sources

global
illumination

soft shadows

13.4

Next week:
• Transformations - positioning, scaling,

rotating, shearing, etc. of objects and
cameras in the scene.

• Intro to object-order rendering.

