Computer Graphics

Lecture 9
Mirror Reflection
Shadows
Triangles

Announcements

Announcements

e HW1: If you aren't familiar with latex or
some other typesetting system, talk to me.

Announcements

e HW1: If you aren't familiar with latex or
some other typesetting system, talk to me.

e Use Piazza!

Diffuse (Lambertian) Shading

—

Ld —]{fdf max((), n - f)

al.]

[Foley et

For colored objects, k. is a 3-vector of R, G, and B reflectances.

Specular Reflection

e \What about non-mirror
shiny surfaces?

* They appear brighter
near "mirror" configuration <
\ | AL

* Phong reflection: specular v
reflection is a function of
angle between r and v.

Specular Reflection

e Blinn-Phong: specular reflection is a
function of angle between half-way vector
between view and light and the normal.

N
//°\\

N

* Reflected light proportionalto « %(x -

- ks max (0,7 - h)p\

specular coefficient: specular exponent:

determines strength of det _ .
specularity term etermines shininess

e h = bisector(v,)

Computing h

e whiteboard

Computing h

e whiteboard

bisector (7, £) = -

S Sy

|7+

COS

Effect of p

CoSs? o

cos® o

cosb4 o

90°¢

v

Putting it all Together:
Blinn-Phong Reflection Model

Usually surfaces have both diffuse and specular
components, so we'll combine the two:

L=Lg+ L,
= kgl max (0,7 - l_j + ks max(0,7i - E)p

Putting it all Together:
Blinn-Phong Reflection Model

Usually surfaces have both diffuse and specular
components, so we'll combine the two:

diffuse specular
g reflection reflection

\ \ /
L =1Lg+ L,

= kgl max((), n - l) + ks]maX(Oa - }—i)p

light reflecte

Putting it all Together:
Blinn-Phong Reflection Model

Usually surfaces have both diffuse and specular
components, so we'll combine the two:

diffuse specular
g reflection reflection

\ \ /
L =1Lg+ L,

= kqI max (0,17 - l_j + ks max (0,7 - }—i)p

diffuse coefficient light light
(surface brightness iIntensity direction

and color)

light reflecte

normal

Putting it all Together:
Blinn-Phong Reflection Model

Usually surfaces have both diffuse and specular
components, so we'll combine the two:

diffuse specular

light reflected reflection reflection

\ \ / specular exponent
L =L q -+ LS (sharpnes; of specularity)
= kdl max(0, 7 —I— k]max(() - h)P
diffuse coefﬂment Ilght Ilght half-vector
(surface brightness intensity direction between |l and v
and color) specular coefficient
normal (strength [and color]

of specularity)

Putting it all Together:
Blinn-Phong Reflection Model

Usually surfaces have both diffuse and specular
components, so we'll combine the two:

diffuse specular

light reflected reflection reflection

\ \ / specular exponent
L =L q -+ LS (sharpnes; of specularity)
—-kdlrnax: +—k Irnax(O 7 - h)P
diffuse coefﬂment Ilght Ilght half-vector
(surface brightness intensity direction between |l and v
and color) specular coefficient
normal (strength [and color]

of specularity)

In code: function shade light(light, hitrec,...)

What if there are multiple lights?

Light is additive - add them together:

In code:

What if there are multiple lights?

Light is additive - add them together:

lights
L= %" kgl max(0,7-1;) + koI max(0,7 - h;)"
i=1
In code:

function determine color(hitrec, ray, scene, ...):

What if there are multiple lights?

Light is additive - add them together:

lights
L= %" kgl max(0,7-1;) + koI max(0,7 - h;)"
i=1
In code:

function determine color(hitrec, ray, scene, ...):
color = black

What if there are multiple lights?

Light is additive - add them together:

lights
L= %" kgl max(0,7-1;) + koI max(0,7 - h;)"
i=1
In code:

function determine color(hitrec, ray, scene, ...):
color = black
for light 1n scene.lights:

What if there are multiple lights?

Light is additive - add them together:

7 lights
L= Y kqlmax(0,ii-1;) + keI max(0,7 - h;)?
i=1
In code:

function determine color(hitrec, ray, scene, ...):
color = black
for light 1n scene.lights:
color += shade light(light, hitrec, ...)

A disclaimer about point lights

A disclaimer about point lights

intensity
here: [

A disclaimer about point lights

~

Intensity
here: T /r?

intensity
here: [

A disclaimer about point lights

~

Intensity
here: T /r?

intensity
here: [

In A2, we're ignoring the factor of 1/r?, for ease of modeling.

Our images so far:

Point light

smaller ks blue k.

gray kg4

larger £

smaller p larger p red ks

What's next?

Mirror-reflective surfaces

Shadows

A2: Code Inventory

//,function traceray(scene, ray, tmin, tmax):

Returns the color of the point visible if you look along ray at scene.

function closest intersect(objs, ray, tmin, tmax):

Returns a HitRecord with info about the intersection point of

Finds the closest intersection, if any, of ray with sphere.

function determine color(hitrec, ray): "is called by"

7 .

ray with the first one of objs it hits.
\ function ray intersect(ray, sphere, tmin, tmax):
(Computes the color at the intersection point.

function shade light(light, hitrec,...)
Computes the color contribution from a single light source.

A2: Code Inventory

/vfunction traceray(scene, ray, tmin, tmax):

Returns the color of the point visible if you look along ray at scene.

function closest intersect(objs, ray, tmin, tmax):

Returns a HitRecord with info about the intersection point of

Finds the closest intersection, if any, of ray with sphere.

function determine color(hitrec, ray): "is called by"

Computes the color at the intersection point. e

ray with the first one of objs it hits.
\function ray intersect(ray, sphere, tmin, tmax):
<function shade light(light, hitrec,...) whiteboard:

Computes the color contribution from a single light source. traceray
pseudocode

Mirror Reflection

<\
//'\\

AN
What does a camera see when it looks at a mirror?

X~ v\ O

X

Mirror Reflection

‘\
AN

What does a camera see when it looks at a mirror?

- n

A

O

Mirror Reflection

‘\
AN

What does a camera see when it looks at a mirror?

- n

Hint: A

Mirror Reflection

‘\
AN

What does a camera see when it looks at a mirror?

- n

X

Hint: A

Can we do this using the tools we already have?

Mirror Reflection

‘\
AN

What does a camera see when it looks at a mirror?

- n

r
Vv
From last time:

r=—vU42(U-n)n

X

Hint: A

Can we do this using the tools we already have?

Mirror Reflection

N
| N
What does a camera see when it looks at a mirror?
X~ .
r
Vv
From last time:
F=—0+2(7-)i
X
mirr ray.origin = x Hint: é>—

mirr ray.direction = r

Mirror Reflection

‘\
AN

What does a camera see when it looks at a mirror?

- n

A

r
\'}
From last time:
F=—0+2(0 77
X
mirr ray.origin = x Hint: é>—
mirr ray.direction = r

color = traceray(scene, mirr ray, epsilon, Inf):

Mirror Reflection

‘\
AN

What does a camera see when it looks at a mirror?

- n

A

r
\"/
From last time:
r=—U42(0-n)n
X

' . = Talk small value to avoid hitting
m+rr_ray.01.:1g1n. x Hlnt' A’ the surface x lies on
mirr ray.direction = r /

color = traceray(scene, mirr ray, epsilon, Inf):

Partially-Mirrored Surfaces

Notice the floor is
gray but also
mirror-reflective.

Materials store a
mirror coefficient:
fraction of light that is
reflected in a mirror-
like fashion

Partially-Mirrored Surfaces

Notice the floor is
gray but also
mirror-reflective.

Materials store a
mirror coefficient:
fraction of light that is
reflected in a mirror-
like fashion

L=Fk,L,+ (1—Fkp)(Lq+ L)

Partially-Mirrored Surfaces

Notice the floor is
gray but also
mirror-reflective.

Materials store a
mirror coefficient:
fraction of light that is
reflected in a mirror-
like fashion

L =k, L + (1 = km)(La + Ls)

mirror / mirror-reflected "local" color
coefficient light (Blinn-Phong)

Shadows

Shadows

Less Wrong

Shadows

Wrong Less Wrong

Shadows

How can we tell if a point is in shadow?

<. Point light
N

Eye

e O Sphere

Shadows

How can we tell if a point is in shadow?

<. Point light
N

Eye

e OSphere

V |

Shadows

How can we tell if a point is in shadow?

. Point light
AR

Eye
\a Sphere

Point is shadowed iff:
closest intersect(objs, Ray(x, 1), tmin, tmax) != nothing

Shadows

How can we tell if a point is in shadow?

Exercise: What do we >/‘.\/< Point light

use for tmin, tmax?

Directional Point _ Sphere
~ light/ | light S
r.orig X | X I
r.dir Z S — X
tmin eps eps
"""""" tax | Inf 1

Point is shadowed iff:
closest intersect(objs, Ray(x, 1), tmin, tmax) != nothing

function determine color(hitrec, ray, scene, ...):

function determine color(hitrec, ray, scene, ...):
color = black

function determine color(hitrec, ray, scene, ...):
color = black
for light 1in scene.lights:

function determine color(hitrec, ray, scene,
color = black
for light 1in scene.lights:
1f !i1s shadowed(scene, light, hitrec)

function determine color(hitrec, ray, scene,
color = black
for light 1in scene.lights:
1f !i1s shadowed(scene, light, hitrec)
color += shade light(light, hitrec,

Let's talk about bunnies.

If we want bunnies, we still need to implement

function ray intersect(ray, triangle, tmin, tmax):

Then, we can treat a triangle mesh as simply a list of triangles.

Let's talk about triangles.

A triangle is the
Intersection of three half-

planes

High-level approach:

1. Intersect with the plane

2. Check if intersection is
inside the triangle

Let's talk about triangles.

A triangle is the
Intersection of three half-

planes

High-level approach:
1. Intersect with the plane
2. Check if intersection is

inside the triangle

Let's talk about triangles.

A triangle is the
Intersection of three half-

planes

High-level approach:
1. Intersect with the plane
2. Check if intersection is

inside the triangle

To make this easy, we'll introduce the
weirdest coordinate system you've ever seen.

Let's talk about triangles.

A triangle is the
Intersection of three half-

planes

High-level approach:
1. Intersect with the plane
2. Check if intersection is

inside the triangle

To make this easy, we'll introduce the
weirdest coordinate system you've ever seen.

As a bonus, we'll get interpolation of vertex quantities for free!

Barycentric Coordinates

A purpose-built coordinate system for talking
about points in a specific triangle's plane.

p=a+ﬂ<b—a>+w<c—a>7i 7“ / I

e Coordinates are proportional to area of
subtriangles:

