Shiny Surfaces

Mirror:

Light reflected in only one direction - reflected across \hat{n}

What direction is \hat{r}?

Dot product $\hat{l} \cdot \hat{n}$ gives length of projection of \hat{l} onto \hat{n} ($= \cos \theta$)

\[\hat{l} \cdot \hat{n} = \cos \theta \text{ (scalar)} \]

This quantity times \hat{n} gives the vector from the (flat) surface to \hat{r}'s endpoint. To get \hat{r}, take $-\hat{l}$ and add $2\times$ this vector:

\[\hat{r} = \hat{l} + 2(\hat{l} \cdot \hat{n})\hat{n} \]

Shiny but not mirror:

Brighter (reflects more light) near "mirror" configuration.
Specular Reflection:

\[\mathbf{L}_s = f(\mathbf{P} \cdot \mathbf{n}) = f(\cos \alpha) \]

Intuitive heuristic:

More light near mirror configuration \((\mathbf{P} = \mathbf{n})\)

Alternative: \(\mathbf{h} \in \text{bisector } (\mathbf{P}, \mathbf{n})\)

"half-vector":

\[\mathbf{h} = \frac{\mathbf{P} + \mathbf{n}}{\|\mathbf{P} + \mathbf{n}\|} \]

\[\mathbf{L}_s = f(\mathbf{n} \cdot \mathbf{h}) \]

Not always equivalent in 3D; Blinn-Phong is closer to reality, and faster to compute.

In both cases,

\[f(x) = k_s \max(0, x)^p \]

"sharpness" of specularity

Strength of specularity

Blinn-Phong model, complete:

\[\mathbf{L}_s = \mathbf{I} k_s \max(0, \mathbf{n} \cdot \mathbf{h})^p \]

Most surfaces are a mix of diffuse and specular, so the full shading model is

\[\mathbf{L} = \mathbf{L}_d + \mathbf{L}_s \]