Computer Graphics

Lecture 8
Shading
Mirror Reflection
Shadows

Announcements

Announcements

e HW1 Is out - due next Monday

Announcements

e HW1 Is out - due next Monday

e HW1 Problems 3 and 4 will help with A2 TODO 9 and 8.

Announcements

e HW1 Is out - due next Monday

e HW1 Problems 3 and 4 will help with A2 TODO 9 and 8.

e A2 Is now due Friday 2/7

Ray Tracing: Pseudocode

for each pixel:

generate a viewing ray for the pixel
find the closest object 1t intersects

determine the color of the object

QY

—

//'\\ light source
viewer (eye)

V’

e

>
Vi 3
/ P

visible point

objects
In scene

Ray Tracing: Pseudocode

for each pixel:

generate a viewing ray for the pixel

find the closest object 1t intersects

determine the color of the object

QY

—

//'\\ light source
viewer (eye)

V’

e

>
Vi 3
/ P

visible point

objects
In scene

Shading

What does the color of a pixel depend on?

o surface normal stored in or calculated from object

stored In

e surface properties (color, shininess, ...) object

calculated from viewing ray and

e eye direction . . .
Intersection point

calculated from light and
Intersection point

* [ight direction (for each light)

Ray-Sphere: Code Sketch

function ray intersect(ray, sphere, tmin, tmax):
e Use last lecture's math to find +/- t
* If no real solutions, return nothing

e Otherwise, return closest t that lies between tmin
and tmax

* Also return info needed for shading - store in a
HitRecord struct.

In A2: t, intersection point, normal, texture coordinate, object

Ray-Scene: Code Sketch

Brute force: check all objects.
There are better ways - more on this later.

find intersection(ray, scene):
closest t = Inf # closest intersection t
closest rec = nothing # HitRecord for intersection

for obj in scene:

t, rec ray intersect(ray, obj, 1, closest t)
1f rec != nothing:

closest t =t

closest rec = rec

return closest t, closest rec

Ray Tracing: Code Sketch

scene = model scene()
for each pixel (i,3j):

ray = get view ray(i, J)

t, rec = find intersection(ray, scene)
1f rec != nothing:

canvas[1,]] = obj.color
else:

canvas[1,]] = scene.bgcolor

Ray Tracing: Code Sketch

scene = model scene()
for each pixel (i,3j):
ray = get view ray(i, J)
t, rec = find intersection(ray, scene)
1f rec != nothing:
canvas[1,]] = obj.color
else:

canvas[1,]] = scene.bgcolor

Ray Tracing: Code Sketch

scene = model scene()
for each pixel (i,3j):
ray = get view ray(i, J)
t, rec = find intersection(ray, scene)

1f rec != nothing:

canvas[i,]j] = obj.color | Let's work on this.

else:

canvas[1,]] = scene.bgcolor

Light Sources

e \Where does light come from?

e Two simple kinds of sources:

e point source: defined by a 3D position

* directional source: defined by a 3D direction vector

\/
>,'\< light source
viewer (eye)

Y"

c

3.

Vi D
/ P

GW’OQ %

visible point /—\

Diffuse (Lambertian) Reflection

e On a diffuse surface, light scatters
uniformly in all directions.

* No dependence on view direction.

e Many surfaces are approximately
diffuse:

e matte painted surfaces, projector screens,

e anything that doesn't look "shiny"

Diffuse (Lambertian) Reflection

e whiteboard

Diffuse (Lambertian) Reflection

Diffuse (Lambertian) Reflection

The top face of a cube
receives some
amount of light.

Diffuse (Lambertian) Reflection

The top face of a cube Rotated 60°, the same
receives some face receives half the
amount of light. light.

Diffuse (Lambertian) Reflection

The top face of a cube Rotated 60°, the same

receives some
amount of light.

face receives half the
light.

pd
e

A

A n

g

Light per unit area is
proportional tg
cosd =n -/

Diffuse (Lambertian) Shading

e The full model;

—

Ld —]fd] max((), n - f)
diffuse why max?
coefficient

diffusely

reflected light ight intensity

Diffuse (Lambertian) Shading

e The full model;

—

Ld — k’dl max((), n - f)

diffuse why max? ¢

4.

coefficient

diffusely
reflected light

light intensity .
T

Diffuse (Lambertian) Shading

—

Ld —]fd[max(ﬁ ' f)

For colored objects, k. is a 3-vector of R, G, and B reflectances.

Exercise: Diffuse Reflection

Let's talk shinies.

e How does a mirror interact with light?

(whiteboard)

Specular Reflection

e \What about non-mirror
shiny surfaces?

* They appear brighter
near "mirror" configuration <
\ | AL

* Phong reflection: specular v
reflection is a function of
angle between r and v.

Specular Reflection

e Blinn-Phong: specular reflection is a
function of angle between half-way vector
between view and light and the normal.

N
//°\\

N

* Reflected light proportionalto « %(x -

- ks max (0,7 - h)p\

specular coefficient: specular exponent:

determines strength of det _ .
specularity term etermines shininess

e h = bisector(v,)

COS

Effect of p

CoSs? o

cos® o

cosb4 o

90°¢

v

Putting it all Together:
Blinn-Phong Reflection Model

Usually surfaces have both diffuse and specular
components, so we'll combine the two:

diffuse specular

light reflected reflection reflection

\ \ J/ specular exponent
L =L q -+ LS (sharpnes; of specularity)
= kdl max(0, 7 —I— k]max(() - h)P
diffuse coefﬂment Ilght Ilght half-vector
(surface brightness intensity direction between |l and v
and color) specular coefficient
normal (strength [and color]

of specularity)

Mirror Reflection

NS
.\
I\

What does a camera see when it looks at a mirror?

\ ~

Can we do this using the tools we already have?

(Exercise 2)

Mirror Reflection

NS
.\
I\

What does a camera see when it looks at a mirror?

| O

X
Can we do this using the tools we already have?

find intersection(ray, scene)

Mirror Reflection

NS
.\
I\

What does a camera see when it looks at a mirror?

| O

compute r X
ray = Ray(x, r)

find intersection(ray, scene)

Recursion!?

traceray(ray, scene):
t, rec = find intersection(ray, scene)
1f rec.obj 1s a mirror:
compute r, the reflection direction
mirror ray = Ray(rec.x, r)
return traceray(mirror ray, scene)

other cases, ...

Mirror Coefficient

e Most surfaces aren't perfect mirrors. Object
stores a mirror coefficient k_m between 0
and 1.

e "Local color" computed as usual
e "reflected color" computed recursively

e Final color: k_m * reflected + (1-k_m) * local

