Computer Graphics

Lecture 7
Ray-Sphere Intersection
Lights and Shading

Announcements

Announcements

e A2 out later today.

Announcements

e A2 out later today.

e HW1 out soonish.

Ray Tracing: Pseudocode

for each pixel:

generate a viewing ray for the pixel
find the closest object 1t intersects

determine the color of the object

QY

—

//'\\ light source
viewer (eye)

V’

e

>
Vi 3
/ P

visible point

objects
In scene

Ray Tracing: Pseudocode

for each pixel:

generate a viewing ray for the pixel

find the closest object 1t intersects

determine the color of the object

QY

—

//'\\ light source
viewer (eye)

V’

e

>
Vi 3
/ P

visible point

objects
In scene

Implicit vs Parametric

e Implicit equations: a property true at all points

* eg.,ax+by+c=0,foralne

e Parametric equations: use a free parameter
variable to generate all points:

* e.g., r(t) =p + td, for a line

* |Intersecting parametric with implicit is usually
cleanest.

Ray-Sphere Intuition:
Geometric

* How many times will can ray intersect a
sphere?

e For now, consider a unit sphere at the
origin.

e What's an implicit equation for a sphere?
or: What's true of all points on a sphere?

Ray-Sphere Intuition:
Geometric

* How many times will can ray intersect a
sphere?

e For now, consider a unit sphere at the
origin.

e What's an implicit equation for a sphere?
or: What's true of all points on a sphere?

Intuition: LHS gives the point's signed distance from sphere.

Ray-Sphere Intuition:
Geometric

* How many times will can ray intersect a

sphere”?

 An implicit equation for a sphere:

[]32

Y

2

22 —1=0

Intuition: LHS gives any 3D point's (squared)
sighed distance from sphere's surface.

Ray-Sphere Intersection:
Algebraic

Whiteboard / notes.

Ray-Sphere intersection

e For now, assume unit sphere centered at
the origin. See 4.4.1 for general derivation.

,_—d-pty(d-p?-(d-dE p-1

d-d
If d is unit-length:

t=-d-p£y/(d-p)??-p-p+]

Geometric Intuition

t=-d-pt+/(d-p)?-p-p+1

Ray-Sphere: Code Sketch

function ray intersect(ray, sphere, tmin, tmax):

e Use above math to find +/-t

e If none, return nothing

e Otherwise, return closest t that lies between
tmin and tmax

Ray-Scene: Code Sketch

Brute force: check all objects.
There are better ways - more on this later.

find intersection(ray, scene):
closest t = Inf
closest obj = nothing
for obj 1n scene:
t
1f obj != nothing:

ray 1lntersect(ray, obj, 1, closest t)

closest t = t
closest obj = surf

return closest t, closest obj

Ray Tracing: Code Sketch

scene = model scene()
for each pixel (i,3j):

ray = get view ray(i, J)

t, obj = find intersection(ray, scene)
1f obj != nothing:

canvas[1,]] = obj.color
else:

canvas[1,]] = scene.bgcolor

Ray Tracing: Code Sketch

scene = model scene()
for each pixel (i,3j):
ray = get view ray(i, J)
t, obj = find intersection(ray, scene)
1f obj != nothing:
canvas[1,]] = obj.color
else:

canvas[1,]] = scene.bgcolor

Ray Tracing: Code Sketch

scene = model scene()
for each pixel (i,3j):
ray = get view ray(i, J)
t, obj = find intersection(ray, scene)

1f obj != nothing:

canvas[i,]j] = obj.color | Let's work on this.

else:

canvas[1,]] = scene.bgcolor

Shading

e \What does the color of a pixel depend on?

Shading

What does the color of a pixel depend on?

e surface normal

e surface properties (color, shininess, ...) > flightsource
viewer (eye)

<

e eye direction

&

3.

Vi 3
/ .

GW/f)g %

e [ight direction (for each IN

Shading

What does the color of a pixel depend on?

o surface normal stored in or calculated from object

stored In

e surface properties (color, shininess, ...) object

calculated from viewing ray and

e eye direction . . .
Intersection point

calculated from light and
Intersection point

* [ight direction (for each light)

Eye Direction: Exercise

Given aray (p + td) and the t at which it
intersects a surface, find a unit vector giving the
direction from the surface towards the viewer.

Light Sources

e \Where does light come from?

e Two simple kinds of sources:

e point source: defined by a 3D position

* directional source: defined by a 3D direction vector

\/
>,'\< light source
viewer (eye)

Y"

c

3.

Vi D
/ P

GW’OQ %

visible point /—\

Light Sources: Exercise

Given a ray (p + td) and the t at which it
Intersects a surface, calculate a unit vector
giving the direction from the surface towards:

q
e a point light source at position S

e a directional light source with direction §

Diffuse (Lambertian) Reflection

e On a diffuse surface, light scatters uniformly
In all directions.

* No dependence on view direction.

* Many surfaces are approximately diffuse:

e matte painted surfaces, projector screens,

» anything that doesn't look "shiny"

Diffuse (Lambertian) Reflection

e whiteboard

Diffuse (Lambertian) Reflection

Diffuse (Lambertian) Reflection

The top face of a cube
receives some
amount of light.

Diffuse (Lambertian) Reflection

The top face of a cube Rotated 60°, the same
receives some face receives half the
amount of light. light.

Diffuse (Lambertian) Reflection

The top face of a cube Rotated 60°, the same

receives some
amount of light.

face receives half the
light.

pd
e

A

A n

g

Light per unit area is
proportional tg
cosd =n -/

Diffuse (Lambertian) Shading

e The full model:
q

Ly = kgl max(n - {)
coefioen why max?

diffusely

reflected light light intensity

Diffuse (Lambertian) Shading

—

Ld —]fd[max(ﬁ ' f)

For colored objects, k. is a 3-vector of R, G, and B reflectances.

Specular Reflection

e \What about shiny surfaces?

N\
//'\

e They appear brighter \\
near "mirror" configuration | D

Specular Reflection

e Approximation:

half-way vector between view and light
IS close to the normal. N

VY
* h = bisector(v, I) \1 nh /

e Reflected light proportional to \&V

- ks max (0,7 - h)p\

lar icient:
specular coefficient specular exponent:

determines strength of det _ .
specularity term etermines shininess

COS

Effect of p

CoSs? o

cos® o

cosb4 o

90°¢

v

