Announcements
Announcements

• A2 out later today.
Announcements

• A2 out later today.

• HW1 out soonish.
Ray Tracing: Pseudocode

for each pixel:
 generate a viewing ray for the pixel
 find the closest object it intersects
 determine the color of the object
Ray Tracing: Pseudocode

for each pixel:

 generate a viewing ray for the pixel
 find the closest object it intersects
 determine the color of the object
Implicit vs Parametric

• Implicit equations: a property true at all points
 • e.g., \(ax + by + c = 0 \), for a line

• Parametric equations: use a free parameter variable to generate all points:
 • e.g., \(r(t) = p + td \), for a line

• Intersecting parametric with implicit is usually cleanest.
Ray-Sphere Intuition: Geometric

• How many times will can ray intersect a sphere?

• For now, consider a unit sphere at the origin.

• What's an implicit equation for a sphere? or: What's true of all points on a sphere?
Ray-Sphere Intuition: Geometric

- How many times will a ray intersect a sphere?
- For now, consider a unit sphere at the origin.
- What's an implicit equation for a sphere? Or: What's true of all points on a sphere?

Intuition: LHS gives the point's signed distance from sphere.
Ray-Sphere Intuition: Geometric

• How many times will can ray intersect a sphere?

• An implicit equation for a sphere:

\[x^2 + y^2 + z^2 - 1 = 0 \]

Intuition: LHS gives any 3D point's (squared) signed distance from sphere's surface.
Ray-Sphere Intersection: Algebraic

Whiteboard / notes.
Ray-Sphere intersection

- For now, assume unit sphere centered at the origin. See 4.4.1 for general derivation.

\[
t = \frac{-d \cdot p \pm \sqrt{(d \cdot p)^2 - (d \cdot d)(p \cdot p - 1)}}{d \cdot d}
\]

If \(d \) is unit-length:

\[
t = -d \cdot p \pm \sqrt{(d \cdot p)^2 - p \cdot p + 1}
\]
Geometric Intuition

\[t = -d \cdot p \pm \sqrt{(d \cdot p)^2 - p \cdot p + 1} \]

\[t_m = -p \cdot d \]

\[l_m^2 = p \cdot p - (p \cdot d)^2 \]

\[\Delta t = \sqrt{1 - l_m^2} \]

\[= \sqrt{(p \cdot d)^2 - p \cdot p + 1} \]

\[t_{0,1} = t_m \pm \Delta t = -p \cdot d \pm \sqrt{(p \cdot d)^2 - p \cdot p + 1} \]
Ray-Sphere: Code Sketch

function ray_intersect(ray, sphere, tmin, tmax):

- Use above math to find +/- t
- If none, return nothing
- Otherwise, return closest t that lies between tmin and tmax
Ray-Scene: Code Sketch

Brute force: check all objects. There are better ways - more on this later.

```python
find_intersection(ray, scene):
    closest_t = Inf
    closest_obj = nothing
    for obj in scene:
        t = ray_intersect(ray, obj, 1, closest_t)
        if obj != nothing:
            closest_t = t
            closest_obj = surf
    return closest_t, closest_obj
```
Ray Tracing: Code Sketch

scene = model_scene()
for each pixel (i,j):
 ray = get_view_ray(i, j)
t, obj = find_intersection(ray, scene)
if obj != nothing:
 canvas[i,j] = obj.color
else:
 canvas[i,j] = scenebgcolor
Ray Tracing: Code Sketch

```python
scene = model_scene()
for each pixel (i, j):
    ray = get_view_ray(i, j)
    t, obj = find_intersection(ray, scene)
    if obj != nothing:
        canvas[i, j] = obj.color
    else:
        canvas[i, j] = scene.bgcolor
```
Ray Tracing: Code Sketch

scene = model_scene()
for each pixel (i, j):
 ray = get_view_ray(i, j)
 t, obj = find_intersection(ray, scene)
 if obj != nothing:
 canvas[i,j] = obj.color
 else:
 canvas[i,j] = scene.bgcolor

Let's work on this.
Shading

• What does the color of a pixel depend on?
Shading

What does the color of a pixel depend on?

- surface normal
- surface properties (color, shininess, ...)
- eye direction
- light direction (for each light)
Shading

What does the color of a pixel depend on?

• surface normal stored in or calculated from object

• surface properties (color, shininess, ...) stored in object

• eye direction calculated from viewing ray and intersection point

• light direction (for each light) calculated from light and intersection point
Eye Direction: Exercise

Given a ray \((p + td)\) and the \(t\) at which it intersects a surface, find a unit vector giving the direction from the surface towards the viewer.
Light Sources

• Where does light come from?

• Two simple kinds of sources:
 • point source: defined by a 3D position
 • directional source: defined by a 3D direction vector
Light Sources: Exercise

Given a ray \((p + td)\) and the \(t\) at which it intersects a surface, calculate a unit vector giving the direction from the surface towards:

- A point light source at position \(\vec{S}\)
- A directional light source with direction \(\vec{\ell}\)
Diffuse (Lambertian) Reflection

• On a *diffuse* surface, light scatters uniformly in all directions.

• No dependence on view direction.

• Many surfaces are approximately diffuse:
 • matte painted surfaces, projector screens,
 • anything that doesn't look "shiny"
Diffuse (Lambertian) Reflection

- whiteboard
Diffuse (Lambertian) Reflection
Diffuse (Lambertian) Reflection

The top face of a cube receives some amount of light.
Diffuse (Lambertian) Reflection

The top face of a cube receives some amount of light.

Rotated 60°, the same face receives half the light.
Diffuse (Lambertian) Reflection

The top face of a cube receives some amount of light.

Rotated 60°, the same face receives half the light.

Light per unit area is proportional to $\cos \theta = \vec{n} \cdot \vec{l}$.
Diffuse (Lambertian) Shading

• The full model:

\[L_d = k_d I \max(\vec{n} \cdot \vec{l}) \]

- diffuse coefficient
- why max?
- diffusely reflected light
- light intensity
Diffuse (Lambertian) Shading

$$L_d = k_d I \max(\vec{n} \cdot \vec{l})$$

For colored objects, k_d is a 3-vector of R, G, and B reflectances.
Specular Reflection

- What about shiny surfaces?
- They appear brighter near "mirror" configuration
Specular Reflection

- Approximation:

 half-way vector between view and light is close to the normal.

- \(h = \text{bisector}(v, I) \)

- Reflected light proportional to

 \[k_s \max(0, \tilde{n} \cdot \tilde{h})^p \]

 specular coefficient: determines strength of specularity term
 specular exponent: determines shininess
Effect of p