
Lecture 6: Non-Canonical Cameras and
Ray-Sphere Intersection

Last time we played with a "canonical camera":

Eye is at the origin (0, 0, 0)
Looking down the negative z axis
Viewport is aligned with the xy plane
viewport height and width are 1
distance from eye to viewport is 1
image height = H = image width = W

We imposed a coordinate system in the image plane and determined the position of pixel (i,
j).

Warmup exercise:
1a. You have a canonical perspective camera (i.e., centered at the origin, looking at the -z axis,
viewport height and width 1, distance to viewport 1). Your image is 400x400 pixels. The
coordinates of the pixel are . What is the viewing ray of this pixel? Write the ray in
parametric form (i.e.,).

1b. Out in the scene, there is planar object occupying the entire plane at z=-6. What is the value of
at the intersection point of the ray with the plane?

Then, we had the viewing ray for that pixel was:

Let's see what might change:

viewport height and width - just a scale factor on the formulas.

Exercise: what if distance from eye to viewport is ?

the coordinate of d becomes .
eye position changes - ray origin = eye position

eye orientation changes - this one requires some math

af://n981

Camera Orientation

The idea here is to take advantage of all that work we did for the canonical camera. To so that, we're
going to define a coordinate system (i.e., a basis plus an origin) in which the camera's position is
canonical:

The origin is at the eye
The axis points to the right in image space
The axis points towards the top of the image.
The axis points backwards directly away from the viewport.

This is just like what we did last time with the canonical camera. In that case:

And the view ray's direction is, formally:

The key thing to observe here is that if we change to a different basis, this same thing
applies.

Suppose "right" from the camera is in the xz plane midway between the +x and -z axes

the basis vector would be

the basis vector would be
the basis vector would be

To find the view ray, we can start by computing and values as we did before - in the
coordinate system the camera is the canonical camera, so this calculation is the same.

To get the ray in the global coordinate system we simply need to apply the same equation as
above to change the basis:

Generating a camera basis

Setting the basis vectors manually works, but isn't the most intuititve. Often we want to
specify a camera in terms of more intuitive things like the eye and view direction, or the eye and a
point the camera is looking at.

Both of these have an ambiguity: the camera could roll along its viewing axis and satisfy both, so
usually we also supply an "up" vector. This is not necessarily the axis, but a vector that points "up"
in the scene so the camera is "level".

af://n1019
af://n1053

So given three 3-vectors, specifying:

eye position
view direction
up direction

How do we get a basis?

(whiteboard picture for each of the following steps)

First, it's clear that the view direction should be simply the opposite of , so let's start with

Both other vectors should be orthogonal to , and we'd like to also be orthogonal to up, so let's
pull out the cross product. sould point right, so we want the cross product vectors to be in counter-
clockwise order. So

Now we have our "right" and "back" vectors, so we can use a cross product to get the up-in-image-
space vector:

Exercise: What if instead we were given

eye position
at - the 3D position of the point the camera is looking at (i.e., the center of the image)
up direction

Intersecting Rays with Objects

Once we've calculated the ray for a pixel, we need to send it out into the scene and see what object it
hits first. For now, this requires checking for each object whether the ray intersects it. In the earlier
Exercise, you intersected a ray with a particular plane. We're going to start here with intersecting rays
with spheres.

Parametric vs Implicit Equations

Consider a line in 2D. Formally, a line is a particular set of points in . There are multiple ways to
write equations that describe the line; this one probably looks familiar:

This is implicit equation: the defining characteristic is that it gives us an equation that is true of all
points on the line. Usually for maximum generality we put a zero on one side of the equals sign.
However, this is just an algebraic rearrangement of the more familiar .

af://n1081
af://n1083

Here's another way to describe a 2D line:

This is actually vector notation for the following:

This is just the ray equation we saw last time - and if we don't insist that , this describes all
possible points on the line. This is a parametric equation, because it uses an extra parameter
variable, , and by setting to different values we are able to generate all points on the line.

Generally speaking, it's easiest to find the intersection between two objects when one is parametric
and one is implicit. Consider intersecting two lines: if we have one in parametric form, we can just
drop the r.h.s of each parametric equation into the implicit equation for the other line and solve a
single equation for t.

