
Lecture 6: Non-Canonical Cameras and
Ray-Sphere Intersection

 

Last time we played with a "canonical camera":

Eye is at the origin (0, 0, 0)
Looking down the negative z axis
Viewport is aligned with the xy plane
viewport height and width are 1
distance from eye to viewport is 1
image height = H = image width = W

We imposed a  coordinate system in the image plane and determined the  position of pixel (i, 
j).

Warmup exercise:
1a. You have a canonical perspective camera (i.e., centered at the origin, looking at the -z axis, 
viewport height and width 1, distance to viewport 1). Your image is 400x400 pixels. The  
coordinates of the pixel are . What is the viewing ray of this pixel? Write the ray in 
parametric form (i.e., ).

 

 

1b. Out in the scene, there is planar object occupying the entire plane at z=-6. What is the value of  
at the intersection point of the ray with the plane?

 

 

Then, we had the viewing ray for that pixel was:

Let's see what might change:

viewport height and width - just a scale factor on the  formulas.

Exercise: what if distance from eye to viewport is  ?

the  coordinate of d becomes .
eye position changes - ray origin = eye position

eye orientation changes - this one requires some math
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Camera Orientation  

The idea here is to take advantage of all that work we did for the canonical camera. To so that, we're 
going to define a coordinate system (i.e., a basis plus an origin) in which the camera's position is 
canonical:

The origin is at the eye
The  axis points to the right in image space
The  axis points towards the top of the image.
The  axis points backwards directly away from the viewport.

This is just like what we did last time with the canonical camera. In that case:

And the view ray's direction is, formally:

The key thing to observe here is that if we change  to a different basis, this same thing 
applies.

Suppose "right" from the camera is in the xz plane midway between the +x and -z axes

the  basis vector would be 

the  basis vector would be 
the  basis vector would be  

To find the view ray, we can start by computing  and  values as we did before - in the  
coordinate system the camera is the canonical camera, so this calculation is the same.

To get the ray in the global  coordinate system we simply need to apply the same equation as 
above to change the basis:

 

Generating a camera basis  

Setting the  basis vectors manually works, but isn't the most intuititve. Often we want to 
specify a camera in terms of more intuitive things like the eye and view direction, or the eye and a 
point the camera is looking at.

Both of these have an ambiguity: the camera could roll along its viewing axis and satisfy both, so 
usually we also supply an "up" vector. This is not necessarily the  axis, but a vector that points "up" 
in the scene so the camera is "level". 
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So given three 3-vectors, specifying:

eye position
view direction
up direction

How do we get a  basis?

(whiteboard picture for each of the following steps)

First, it's clear that the view direction should be simply the opposite of , so let's start with 

Both other vectors should be orthogonal to , and we'd like  to also be orthogonal to up, so let's 
pull out the cross product.  sould point right, so we want the cross product vectors to be in counter-
clockwise order. So

Now we have our "right" and "back" vectors, so we can use a cross product to get the up-in-image-
space vector:

Exercise: What if instead we were given

eye position
at - the 3D position of the point the camera is looking at (i.e., the center of the image)
up direction

 

Intersecting Rays with Objects  

Once we've calculated the ray for a pixel, we need to send it out into the scene and see what object it 
hits first. For now, this requires checking for each object whether the ray intersects it. In the earlier 
Exercise, you intersected a ray with a particular plane. We're going to start here with intersecting rays 
with spheres.

Parametric vs Implicit Equations  

Consider a line in 2D. Formally, a line is a particular set of points in . There are multiple ways to 
write equations that describe the line; this one probably looks familiar:

This is implicit equation: the defining characteristic is that it gives us an equation that is true of all 
points on the line. Usually for maximum generality we put a zero on one side of the equals sign. 
However, this is just an algebraic rearrangement of the more familiar .
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Here's another way to describe a 2D line:

This is actually vector notation for the following:

This is just the ray equation we saw last time - and if we don't insist that , this describes all 
possible points on the line. This is a parametric equation, because it uses an extra parameter 
variable, , and by setting  to different values we are able to generate all points on the line.

Generally speaking, it's easiest to find the intersection between two objects when one is parametric 
and one is implicit. Consider intersecting two lines: if we have one in parametric form, we can just 
drop the r.h.s of each parametric equation into the implicit equation for the other line and solve a 
single equation for t.


