
Computer Graphics
Lecture 5

Images, Rays,
and Cameras

or: I asked for an image and all I got was this grid of colored blocks

Announcements

Announcements
• Extra office hours 12:15-1:30 today.

Announcements
• Extra office hours 12:15-1:30 today.

• A1: how's it going?

Announcements
• Extra office hours 12:15-1:30 today.

• A1: how's it going?

• A2 out Friday, due Wednesday 2/5

Announcements
• Extra office hours 12:15-1:30 today.

• A1: how's it going?

• A2 out Friday, due Wednesday 2/5

• HW1 (tenatively) out Friday

Where were we?
Pseudocode for 3D graphics:

Create a model of a scene
Render an image of the model

Where were we?
Pseudocode for 3D graphics:

Create a model of a scene
Render an image of the model

Two Rendering Algorithms

Two Rendering Algorithms
for each object in the scene {

for each pixel in the image {
if (object affects pixel) {

do something
}

}
}

object order
or

rasterization

Two Rendering Algorithms
for each object in the scene {

for each pixel in the image {
if (object affects pixel) {

do something
}

}
}

object order
or

rasterization

image order
or

ray tracing

for each pixel in the image {
for each object in the scene {

if (object affects pixel) {
do something

}
}

}

Today

• What does image mean?

• What does render mean?

• Beginnings of image-order rendering 
(i.e., ray tracing)

• Where do rays come from?

Render an image of the model

What is an image?

What is an image?
• At its most formal and general:  

a function mapping positions in 2D to
distributions of radiant energy

• Humans are trichromatic,
so we usually represent
color as combinations or
red, green, and blue

How do we represent
images?

• Raster formats - a 2D array of numbers

• Vector formats - mathematical description

Raster Image Vector Image

Color Displays - Old School
Cathode Ray TubeColor Projector

Color Displays - Old School
Cathode Ray TubeColor Projector

red blue

green

Color Displays - Old School
Cathode Ray TubeColor Projector

red blue

green

yellow cyan

magenta

Color Displays - Old School
Cathode Ray TubeColor Projector

red blue

green

yellow cyan

magenta

white

Color Displays - Nowadays

[W
ik

im
ed

ia
 C

om
m

on
s]

Liquid Crystal Display

Light Emitting

Diode Display

Digital Light Processing

Raster Images
• Flexible

• Display-native

• Expensive

Raster Images: 
2D Arrays of Numbers

• Bitmap (1 bit per pixel)

• Grayscale (usually 8 bpp)

• Color (usually 24 bpp)

• Floating-point (gray or color)

• Bad for display, but good for processing

• Allows high dynamic range

Raster Images: 
Storage

• Bitmap (1 bit per pixel) - 128 KB

• Grayscale (8 bpp) - 1 MB

• Color (24 bpp) - 3 MB

• Floating-point (color) - 12MB

1 megapixel image - 1024x1024:

2D Arrays in Julia
• A height-by-width array, each pixel is 3

single-precision floats initialized to zero:

canvas = zeros(RGB{Float32}, height, width)

2D Arrays in Julia
• A height-by-width array, each pixel is 3

single-precision floats initialized to zero:

canvas = zeros(RGB{Float32}, height, width)

canvas[i, j] # is the i'th row, j'th column

How do we make images?

How do we make images?
• IRL:

• pencils, paintbrushes, watercolors, etc

• eyes

• cameras

• On computers:

• virtual cameras

The Camera Conundrum:

The world is 3D

The Camera Conundrum:

The world is 3D

Images are 2D

The Camera Conundrum:

The world is 3D

Images are 2D

we gotta lose a dimension
somehow

The Camera Conundrum:

Projections: 
ways to lose a dimension

u
e

v

w

Projections: 
ways to lose a dimension

• The picture-frame method is
called perspective projection

u
e

v

w

Projections: 
ways to lose a dimension

• The picture-frame method is
called perspective projection

u
e

v

w

Projections: 
ways to lose a dimension

• The picture-frame method is
called perspective projection

• Key property of perspective:  
all viewing rays originate at a
single point, the center of
projection, or eye.

u
e

v

w

Projections: 
ways to lose a dimension

uew

v

• Another common one is 
parallel projection

Projections: 
ways to lose a dimension

uew

v

• Another common one is 
parallel projection

Projections: 
ways to lose a dimension

uew

v

• Another common one is 
parallel projection

• Key property of parallel
projections:  
all viewing rays are parallel

Projections: 
ways to lose a dimension

uew

v

Ray Tracing: Pseudocode
for each pixel:

 generate a viewing ray for the pixel

 find the closest object it intersects

 determine the color of the object

A ray is half a line.
We'll describe rays using:

• An origin (p) where the ray begins

• A direction (d) in which the ray goes

A ray is half a line.
We'll describe rays using:

• An origin (p) where the ray begins

• A direction (d) in which the ray goes

• This is a parametric equation: it generates points on the line

A ray is half a line.
We'll describe rays using:

• An origin (p) where the ray begins

• A direction (d) in which the ray goes

• This is a parametric equation: it generates points on the line
• The set of points with t > 0 gives all points on the ray

Viewing Rays
• For perspective projection, viewing rays

originate at the eye.

• The direction varies depending on the pixel.

u
e

v

w

are determined by the position and orientation of the camera

Let's start with a simple
camera

• Eye is at the origin (0, 0, 0)

• Looking down the negative z axis

• Viewport is aligned with the xy plane

• vh = vw = 1

• d = 1

-

+

+

What is the 3D viewing ray for pixel (i, j)?

Viewing rays for the
canonical camera

• u = (j - 0.5) / W - 0.5

• v = -((i - 0.5) / H - 0.5)

• The viewing ray is:

• Origin: (0,0,0)

• Direction: (u, v, -d)

-

+

+

What if I want to put the
camera somewhere else?

u
e

vw

The camera's pose is defined
by a coordinate system:
• u points right from the eye

• v points up from the eye

• w points back from the eye

1. Turn (i,j) into u, v as before

2. Viewing ray in (x, y, z) world is: 

 origin = eye 
 direction = u * u + v * v + -d * w

