
497P/597P - Projective Geometry 2:
Epipolar Geometry

 

We've now talked about the projective representation of points and lines on an image plane. We can 
interpret these objects two ways:

their "true" form (in ), their projection on the 2D image plane (points and lines)
their 3D analogues (in ), before projection (rays and planes)

Where can a point in Camera 1 project to in Camera 2?  

 

 

 

 

 

 

 

 

 

 

Assume that Camera 1 is in canonical position:  is at the origin and its optical axis coincides with 
world , or in other words  and . Now let's add a second camera with known 
extrinsics   and ask: for a given 2D homogeneous point  in Camera 1, where might it appear 
in Camera 2?

The 3D point  that projected to  could be anywhere along the 3D ray from  in the direction 
of . 
Unless the two camera centers coincide, this ray projects to a line in Camera 2.

What line does it project to? Once again, let's think in 3D:

The 3D plane that projects to that line is spanned by the two vectors  and . Recall that 
 is the origin and  is known to be : the translation of the second camera's extrinsics.

Therefore, So the equation for the line along which 's projection lies in Camera 2 is:

 

 



   
  

   
  

or, using our cross-product conversion:

 

 

There's one problem with this: this is the equation for the line in Camera 1 coordinates. To put it in 
Camera 2's coordinate system, we need to change our perspective such that  is the origin and 
Camera 2's optical axis is looking down the  axis.

Conveniently, we've assumed that Camera 1's coordinate system is the same as world 
coordinates! We have tools for this: Camera 2's extrinsics tell us how to get from world 
coordinates to Camera 2 coordiantes.

Normally, we'd need to apply the translation then the rotation. However, the plane we're 
working with already goes through both  and , and it's represented by its normal vector.

The normal vector is assumed to start at the origin, wherever that is - it's a direction, not a 
position.

This means that we don't need to translate it in order to express it in Camera 2 coordinates: all 
we have to do is account for the change in orientation.

   
  

      

     

So in Camera 2 coordinates, the line that  must project onto is:

 

 



The Essential Matrix  

One way to use the knowledge we've just derived is the following:

If a Camera 2 point  corresponds to the same 3D point as  in Camera 1, then  must lie on the 
above line. Using our point-on-line test, we have:

 

 

 Breaking it back apart, this can be written:

 

 

This is a pretty neat property, so it deserves a name. The penthesized quantity  is a  
matrix called the essential matrix:

Notice that this property holds for any pair of corresponding points  and ! 

The Fundamental Matrix  

All of the above has assumed that  and  are in (respectively) Camera 1's and Camera 2's camera 
coordiantes. Another possible way to say this would be that both cameras have identity intrisnics 
(i.e., ). If this is not the case but  and  are known, we can still work with this.

Let  be the point in Camera 1's pixel coordinates corresponding to .

Let  be the point in Camera 2's pixel coordinates corresponding to .

Then, using the known intrinsics, we have

or

If we plug that into our Essential Matrix constraint, we get:



Substituting the definition of , and rearranging parentheses:

where  is cool enough to earn the name Fundamental Matrix. This is crazy: we have a matrix that 
imposes a constraint on the pixel coordinates of two corresponding points.

It's not quite good enough to solve for the location of  given  or vice versa - that's impossible, 
because it's geometrically ambiguous without knowing the 3D location of the 3D scene point  that 
projected t  and .  is the equation of a line, after all - but it restricts the possible solutions to a 1D 
search space along that line.

Properties of the Fundamental Matrix  

 

 

 

 

 

 

 

 

If  is the fundamental matrix that relates Camera 1 to Camera 2 
 has rank 2:  maps to a 1-dimensional solution space (geometrically speaking, a line).

All epipolar lines go through the epipole.
The baseline vector  spans all epipolar planes and passes through both epipoles.

 spans the null space of , i.e., .
 spans the null space of , i.e., .


