Forward Warping

\[I_I(x, y) \rightarrow I_w(x', y') \]

for \(x, y \) in \(I_I \):

\[x', y' = T[y] \]

\[I_w(x', y') = I(x, y) \]

Problem: What if \(x', y' \) are floats?

Possible answer: "Splat" \(I(x, y) \) to multiple pixels in \(I(x', y') \)

Issues with:

- Scale (e.g., \(T \) is a 16x uniform scale)
- Holes remaining after splatting
Linear Interpolation

\[y = y_1(x_2 - x) + y_2(x - x_1) \]

If \(x_1 = 0, \ x_2 = 1 \),

\[y_1(1 - x) + y_2(x) \]
Inverse Warping

For each \((x', y')\) in \(I'_1\):

\[
\begin{align*}
 x, y &= T^{-1}(x', y') \\
 I'_1(x', y') &= \text{interpolate}(I_1, T^{-1}(y'))
\end{align*}
\]

Bilinear Interpolation - placing a tent filter at non-integer coordinates!

Interpretations:
- a tent filter at non-integer coords
- weights determined by areas of rectangles at opposite corner
- interpolate linearly on two sides, then interpolate linearly between the two

\[
I'_1(x', y') = (x_2 - x)(y_2 - y) I(x_1, y_2)
\]

+