Image Matching

Richard Insettiny and Andrew Zimerman

is this thing...

the same as this thing?

Applications: Panorama Stitching

Stitching multiple images into a seamless panorama (Project 2)

Applications: Panorama Stitching

Stitching multiple images into a seamless panorama (Project 2)

Applications: Panorama Stitching

Stitching multiple image into a seamless panorama (Project 2)

Applications: Tracking

- Motion analysis <u>https://youtu.be/1rZNb-affQg</u>
- Augmented reality
- Segmentation
- Robot navigation

https://youtu.be/5I5pbSs-yrU

1. Detect corner features

2. Compute feature **descriptors**

3. Match features based on their descriptors.

4. Warp images into alignment

5. Blend images to eliminate seams

Panorama Stitching: Steps

1. Detect features

- feature matching 2. Compute feature **descriptors**
 - 3. Match features based on their descriptors

geometric transformations

photometric transformations

- 4. Warp images into alignment
- 5. **Blend** images to eliminate seams

- Can be global or local
- Global features "distill" the whole image. examples:
 - average brightness
 - histogram of image intensity values
 - a tiny version of the image itself?
 - a vector ("embedding") produced by a neural network

(our focus)

- Can be global or local
- Global features "distill" the whole image. examples:
 - average brightness
 - histogram of image intensity values
 - a tiny version of the image itself?
 - a vector ("embedding") produced by a neural network

 Local features identify salient / distinctive / useful points in the image. Examples:

Edges

Blobs

Corners

 Local features identify salient / distinctive / useful points in the image. Examples:

Features - Overview

1. Detect

2. Describe

Two desirable properties:

Uniqueness: features shouldn't match if they're from different points in the scene.

 Invariance: features should match if they do come from the same point in the scene.