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Abstract
The Laplacian pyramid is ubiquitous for decomposing 
images into multiple scales and is widely used for image 
analysis. However, because it is constructed with spatially 
invariant Gaussian kernels, the Laplacian pyramid is widely 
believed to be ill-suited for representing edges, as well as for 
edge-aware operations such as edge-preserving smoothing 
and tone mapping. To tackle these tasks, a wealth of alter-
native techniques and representations have been proposed, 
for example, anisotropic diffusion, neighborhood filtering, 
and specialized wavelet bases. While these methods have 
demonstrated successful results, they come at the price 
of additional complexity, often accompanied by higher 
computational cost or the need to postprocess the gener-
ated results. In this paper, we show state-of-the-art edge-
aware processing using standard Laplacian pyramids. We 
characterize edges with a simple threshold on pixel values 
that allow us to differentiate large-scale edges from small-
scale details. Building upon this result, we propose a set of 
image filters to achieve edge-preserving smoothing, detail 
enhancement, tone mapping, and inverse tone mapping. 
The advantage of our approach is its simplicity and flex-
ibility, relying only on simple point-wise nonlinearities and 
small Gaussian convolutions; no optimization or postpro-
cessing is required. As we demonstrate, our method pro-
duces consistently high-quality results, without degrading 
edges or introducing halos.

1. INTRODUCTION
Laplacian pyramids have been used to analyze images at 
multiple scales for a broad range of applications such as 
compression,6 texture synthesis,18 and harmonization.32 How
ever,  these pyramids are commonly regarded as a poor 
choice for applications in which image edges play an 
important role, for example, edge-preserving smoothing 
or tone mapping. The isotropic, spatially invariant, smooth 
Gaussian kernels on which the pyramids are built are con-
sidered almost antithetical to edge discontinuities, which 
are precisely located and anisotropic by nature. Further, the 
decimation of the levels, that is, the successive reduction by 
factor 2 of the resolution, is often criticized for introducing 
aliasing artifacts, leading some researchers (e.g., Li et al.21) 
to recommend its omission. These arguments are often 
cited as a motivation for more sophisticated schemes such 
as anisotropic diffusion,1, 29 neighborhood filters,19, 34 edge-
preserving optimization,4, 11 and edge-aware wavelets.12

While Laplacian pyramids can be implemented using 
simple image-resizing routines, other methods rely on more 
sophisticated techniques. For instance, the bilateral filter 
relies on a spatially varying kernel,34 optimization-based 
methods (e.g., Fattal et al.,13 Farbman et al.,11 Subr et al.,31 and 
Bhat et  al.4) minimize a spatially inhomogeneous energy, 
and other approaches build dedicated basis functions for 
each new image (e.g., Szeliski,33 Fattal,12 and Fattal et al.15). 
This additional level of sophistication is also often associ-
ated with practical shortcomings. The parameters of aniso-
tropic diffusion are difficult to set because of the iterative 
nature of the process, neighborhood filters tend to over-
sharpen edges,5 and methods based on optimization do 
not scale well due to the algorithmic complexity of the solv-
ers. While some of these shortcomings can be alleviated in 
postprocessing, for example, bilateral filtered edges can be 
smoothed,3, 10, 19 this induces additional computation and 
parameter setting, and a method producing good results 
directly is preferable. In this paper, we demonstrate that 
state-of-the-art edge-aware filters can be achieved with 
standard Laplacian pyramids. We formulate our approach 
as the construction of the Laplacian pyramid of the filtered 
output. For each output pyramid coefficient, we render a 
filtered version of the full-resolution image, processed to 
have the desired properties according to the corresponding 
local image value at the same scale, build a new Laplacian 
pyramid from the filtered image, and then copy the cor-
responding coefficient to the output pyramid. The advan-
tage of this approach is that while it may be nontrivial to 
produce an image with the desired property everywhere, it 
is often easier to obtain the property locally. For instance, 
global detail enhancement typically requires a nonlinear 
image decomposition (e.g., Fattal et al.,14 Farbman et al.,11 
and Subr et  al.31), but enhancing details in the vicinity of 
a pixel can be done with a simple S-shaped contrast curve 
centered on the pixel intensity. This local transformation 
only achieves the desired effect in the neighborhood of a 
pixel, but is sufficient to estimate the fine-scale Laplacian 
coefficient of the output. We repeat this process for each 
coefficient independently and collapse the pyramid to 
produce the final output.
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We motivate this approach by analyzing its effect on 
step edges and show that edges can be differentiated 
from small-scale details with a simple threshold on color 
differences. We propose an algorithm that has a O(N log 
N) complexity for an image with N pixels. While our algo-
rithm is not as fast as other techniques, it can achieve visu-
ally compelling results hard to obtain with previous work. 
We demonstrate our approach by implementing a series 
of edge-aware filters such as edge-preserving smoothing, 
detail enhancement, tone mapping, and inverse tone 
mapping. We provide numerous results, including large-
amplitude image transformations. None of them exhibit 
halos, thereby showing that high-quality halo-free results 
can be indeed obtained using only the Laplacian pyramid, 
which was previously thought impossible.

Contributions. The main contribution of this work is a 
flexible approach to achieve edge-aware image process-
ing through simple point-wise manipulation of Laplacian 
pyramids. Our approach builds upon a new understanding 
of how image edges are represented in Laplacian pyramids 
and how to manipulate them in a local fashion. Based on 
this, we design a set of edge-aware filters that produce high-
quality halo-free results (Figure 1).

2. RELATED WORK
Edge-aware image processing. Edge-aware image manipu-
lation has already received a great deal of attention and we 
refer to books and surveys for an in-depth presentation.1, 20, 27 
Recently, several methods have demonstrated satisfying 
results with good performance (e.g., Chen et al.,7 Farbman 
et  al.,11 Fattal,12 Subr et  al.,31 Criminisi et  al.,8 He et  al.,17 
and Kass and Solomon19). Our practical contribution is to 
provide filters that consistently achieve results at least as 
good, have easy-to-set parameters, can be implemented 
with only basic image-resizing routines, are noniterative, 
and do not rely on optimization or postprocessing. In 
particular, unlike gradient-domain methods (e.g., Fattal 
et  al.13), we do not need to solve the Poisson equation 
which may introduce artifacts with nonintegrable gradient 

fields. From a conceptual standpoint, our approach is 
based on image pyramids and is inherently multiscale, 
which differentiates it from methods that are expressed as 
a two-scale decomposition (e.g., Chen et al.,7 Subr et al.,31 
and He et al.17).

Pyramid-based edge-aware filtering. As described earlier, 
pyramids are not the typical representation of choice for fil-
tering an image in an edge-preserving way, and only a few 
techniques along these lines have been proposed. A first 
approach is to directly rescale the coefficients of a Laplacian 
pyramid; however, this typically produces halos.21 While 
halos may be tolerable in the context of medical imaging 
(e.g., Vuylsteke and Schoeters,36 and Dippel et al.9), they are 
unacceptable in photography.

Fattal et al.13 avoid halos by using a Gaussian pyramid 
to compute scaling factors applied to the image gradients. 
They reconstruct the final image by solving the Poisson 
equation. In comparison, our approach directly manipu-
lates the Laplacian pyramid of the image and does not 
require global optimization. Fattal et al.14 use a multiscale 
image decomposition to combine several images for detail 
enhancement. Their decomposition is based on repeated 
applications of the bilateral filter. Their approach is akin 
to building a Laplacian pyramid but without decimating 
the levels and with a spatially varying kernel instead of a 
Gaussian kernel. However, their study is significantly dif-
ferent from ours because it focuses on multi-image com-
bination and speed. In a similar spirit, Farbman et  al.11 
compute a multiscale edge-preserving decomposition 
with a least-squares scheme instead of bilateral filtering. 
This work also differs from ours since its main concern is 
the definition and application of a new optimization-based 
filter. In the context of tone mapping, Mantiuk et  al.23 
model human perception with a Gaussian pyramid. The 
final image is the result of an optimization process, which 
departs from our goal of working only with pyramids.

Fattal12 describes wavelet bases that are specific to each 
image. He takes edges explicitly into account to define the 
basis functions, thereby reducing the correlation between 

(a) Input HDR image tone-mapped with a simple
  gamma curve (details are compressed)

(b) Our pyramid-based tone mapping, set to
         preserve details without increasing them

(c) Our pyramid-based tone mapping, set to 
  strongly enhance the contrast of details

Figure 1. We demonstrate edge-aware image filters based on the manipulation of Laplacian pyramids. Our approach produces high-quality 
results, without degrading edges or introducing halos, even at extreme settings. Our approach builds upon standard image pyramids and 
enables a broad range of effects via simple point-wise nonlinearities (shown in corners). For an example image (a), we show results of 
tone mapping using our method, creating a natural rendition (b) and a more exaggerated look that enhances details as well (c). Laplacian 
pyramids have previously been considered unsuitable for such tasks, but our approach shows otherwise.
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pyramid levels. From a conceptual point of view, our work 
and Fattal’s are complementary. Whereas he designed pyra-
mids in which edges do not generate correlated coefficients, 
we seek to better understand this correlation to preserve it 
during filtering.

Li et  al.21 demonstrate a tone-mapping operator based 
on a generic set of spatially invariant wavelets, countering 
the popular belief that such wavelets are not appropriate for 
edge-aware processing. Their method relies on a corrective 
scheme to preserve the spatial and intrascale correlation 
between coefficients, and they also advocate computing 
each level of the pyramid at full resolution to prevent alias-
ing. However, when applied to Laplacian pyramids, strong 
corrections are required to avoid halos, which prevents a 
large increase of the local contrast. In comparison, in this 
work, we show that Laplacian pyramids can produce a 
wide range of edge-aware effects, including extreme detail 
amplification, without introducing halos.

Gaussian pyramids are closely related to the concept of 
Gaussian scale-space defined by filtering an image with a 
series of Gaussian kernels of increasing size. While these 
approaches are also concerned with the correlation between 
scales created by edges, they are used mostly for purposes of 
analysis (e.g., Witkin37 and Witkin et al.38).

Background on Gaussian and Laplacian pyramids. Our 
approach is based on standard image pyramids, whose 
construction we summarize briefly (for more detail, see 
Burt and Adelson6). Given an image I, its Gaussian pyra-
mid is a set of images {Gl} called levels, representing 
progressively lower resolution versions of the image, in 
which high-frequency details progressively disappear. In 
the Gaussian pyramid, the bottom-most level is the origi-
nal image, G0 = I, and Gl+1 = downsample(Gl) is a low-pass 
version of Gl with half the width and height. The filtering 
and decimation process is iterated n times, typically until 
the level Gn has only a few pixels. The Laplacian pyramid 
is a closely related construct, whose levels {Ll} repre-
sent details at different spatial scales, decomposing the 
image into roughly separate frequency bands. Levels of 
the Laplacian pyramid are defined by the details that dis-
tinguish successive levels of the Gaussian pyramid, Ll = Gl 
− upsample(Gl + 1), where upsample(×) is an operator that 
doubles the image size in each dimension using a smooth 
kernel. The top-most level of the Laplacian pyramid, also 
called the residual, is defined as Ln = Gn and corresponds 
to a tiny version of the image. A Laplacian pyramid can be 
collapsed to reconstruct the original image by recursively 
applying Gl = Ll + upsample(Gl+1) until G0 = I is recovered.

3. DEALING WITH EDGES IN LAPLACIAN PYRAMIDS
The goal of edge-aware processing is to modify an input 
signal I to create an output I¢, such that the large discon-
tinuities of I, that is, its edges, remain in place, and such 
that their profiles retain the same overall shape. For exam-
ple, the amplitude of significant edges may be increased 
or reduced, but the edge transitions should not become 
smoother or sharper. The ability to process images in this 
edge-aware fashion is particularly important for techniques 
that manipulate the image in a spatially varying way, such 

as image enhancement or tone mapping. Failure to account 
for edges in these applications leads to distracting visual 
artifacts such as halos, shifted edges, or reversals of gradi-
ents. In the following discussion, for the sake of illustration, 
we focus on the case where we seek to reduce the edge 
amplitude—the argument when increasing the edge ampli-
tude is symmetric.

In this work, we characterize edges by the magnitude 
of the corresponding discontinuity in a color space that 
depends on the application; we assume that variations due 
to edges are larger than those produced by texture. This 
model is similar to many existing edge-aware filtering tech-
niques (e.g., Aubert and Kornprobst1 and Paris et al.27); we 
will discuss later the influence that this assumption has 
on our results. Because of this difference in magnitude, 
Laplacian coefficients representing an edge also tend to 
be larger than those due to texture. A naive approach to 
decrease the edge amplitude while preserving the texture 
is to truncate these large coefficients. While this creates an 
edge of smaller amplitude, it ignores the actual “shape” of 
these large coefficients and assigns the same lower value to 
all of them. This produces an overly smooth edge, as shown 
in Figure 2.

Intuitively, a better solution is to scale down the coeffi-
cients that correspond to edges, to preserve their profile, 
and to keep the other coefficients unchanged, so that 
only the edges are altered. However, it is unclear how to 
separate these two kinds of coefficients since edges with 
different profiles generate different coefficients across 
scales. On the other hand, according to our model, edges 

(a) Step edge (b) First pyramid level

(c) Second pyramid level

input
(sharp edge)

our approach
(sharp edge)

clipped 
Laplacian coeffs

(rounded edge)

ground truth
compressed edge

(sharp edge)

Figure 2. Range compression applied to a step edge with fine 
details (a). The different versions of the edge are offset vertically 
so that their profiles are clearly visible. Truncating the Laplacian 
coefficients smooths the edge (red), an issue which Li et al.21 have 
identified as a source of artifacts in tone mapping. In comparison, 
our approach (blue) preserves the edge sharpness and very 
closely reproduces the desired result (black). Observing the shape 
of the first two levels (b, c) shows that clipping the coefficients 
significantly alters the shape of the signal (red vs. orange). The 
truncated coefficients form wider lobes whereas our approach 
produces profiles nearly identical to the input (blue vs. orange).
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are easy to identify in image space; a threshold on color 
differences suffices to differentiate edges from varia-
tions due to texture. This is a key aspect of our approach: 
we generate new pyramid coefficients by working primar-
ily on the input image itself, rather than altering the pyra-
mid coefficients directly.

The overall design of our algorithm derives from this 
insight: we build an approximation of the desired out-
put image specific to each pyramid coefficient. This is a 
major difference with the existing literature. Whereas 
previous techniques are formulated in terms of optimization 
(e.g., Farbman et  al.11), PDEs (e.g., Perona and Malik29), or 
local averaging (e.g., Tomasi and Manduchi34), we express 
our filter through the computation of these local image 
approximations together with standard image pyramid 
manipulations. In practice, we use locally processed ver-
sions of the input to recompute values for each pyramid 
coefficient, and combine all of these new coefficient val-
ues into the final result. For each coefficient at location (x, 
y) and level l, we first determine the region in the input 
image on which this coefficient depends. To reduce the 
amplitude of edges, for example, we clamp all the pixels 
values in that region so that the difference to the average 
value does not exceed a user-provided threshold. This pro-
cessed image has the desired property that edges are now 
limited in amplitude, to at most twice the threshold. This 
also has the side effect of flattening the details across the 
edge. As we discuss below, these details are not lost, they 
are actually captured by pyramid coefficients centered on 
the other side of the edge as illustrated in Figure 3. Then, 
we compute the Laplacian pyramid of this processed image 
to create coefficients that capture this property. In particular, 
this gives us the value of the coefficient (x, y, l) that we seek. 
Another way of interpreting our method is that we locally fil-
ter the image, for example, through a local contrast decrease, 
and then determine the corresponding coefficient in the 
Laplacian pyramid. We repeat this process, such that each 
coefficient in the pyramid is computed.

Detail preservation. As mentioned earlier, a reasonable 
concern at this point is that the clamped image has lost 

details in the thresholded regions, which in turn could 
induce a loss in the final output. However, the loss of 
details does not transfer to our final result. Intuitively, the 
clamped details are on “the other side of the edge” and are 
represented by other coefficients. Applying this scheme to 
all pyramid coefficients accurately represents the texture 
on each side of the edge, while capturing the reduction in 
edge amplitude (Figure 3). Further, clamping affects only 
half of the edge and, by combining coefficients on “both 
sides of the edge,” our approach reconstructs an edge pro-
file that closely resembles the input image, that is, the out-
put profiles do not suffer from oversmoothing. Examining 
the pyramid coefficients reveals that our scheme fulfills 
our initial objective, that is, that the edge coefficients are 
scaled down while the other coefficients representing the 
texture are preserved (Figure 2).

4. LOCAL LAPLACIAN FILTERING
We now formalize the intuition gained in the previous 
section and introduce Local Laplacian Filtering, our new 
method for edge-aware image processing based on the 
Laplacian pyramid. A visual overview is given in Figure 4 and 
the pseudo-code is provided in Algorithm 1.

In Local Laplacian Filtering, an input image is processed 
by constructing the Laplacian pyramid {L[I¢]} of the output, 
one coefficient at a time. For each coefficient (x, y, l), we 
generate an intermediate image  by applying a point-wise 
monotonic remapping function rg,s(×) to the original full-
resolution image. This remapping function, whose design 
we discuss later, depends on the local image value from 
the Gaussian pyramid g = Gl(x, y) and the user parameter s 
which is used to distinguish edges from details. We compute 
the pyramid for the intermediate image {L[ ]} and copy the 
corresponding coefficient to the output {L[I¢]}. After all coef-
ficients of the output pyramid have been computed, we col-
lapse the output pyramid to get the final result.

A direct implementation of this algorithm yields a com-
plexity in O(N2) with N being the number of pixels in the 
image, since each coefficient entails the construction of 
another pyramid with O(N) pixels. However, this cost can be 

Input signal Right clipped Left clipped Merged

I

L0

L1

sr

sr

Figure 3. Simple view of our range compression approach, which is 
based on thresholding and local processing. For a step-like signal 
similar to the one in Figure 2, our method effectively builds two 
Laplacian pyramids, corresponding to clipping the input based on 
the signal value to the left and right of the step edge, then merging 
their coefficients as indicated by the color coding.

Figure 4. Overview of the basic idea of our approach. For each pixel 
in the Gaussian pyramid of the input (red dot), we look up its value g. 
Based on g, we remap the input image using a point-wise function, 
build a Laplacian pyramid from this intermediate result, then copy 
the appropriate pixel into the output Laplacian pyramid. This process 
is repeated for each pixel over all scales until the output pyramid 
is filled, which is then collapsed to give the final result. For more 
efficient computation, only parts of the intermediate pyramid need to 
be generated.

Input image
Remapped
subimage

Gaussian
pyramid

Intermediate
Laplacian
pyramid

Output
Laplacian
pyramid

g

r(i)
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variations smaller than s should be considered fine-scale 
details and larger variations are edges. As a center point for 
this function we use g = Gl(x, y), which represents the image 
intensity at the location and scale where we compute the out-
put pyramid coefficient. Intuitively, pixels closer than s to g 
should be processed as details and those farther than s away 
should be processed as edges. We differentiate their treat-
ment by defining two functions rd and re, such that r(i) = rd(i) 
if |i − g| £ s and r(i) = re(i) otherwise. Since we require r to 
be monotonically increasing, rd and re must have this prop-
erty as well. Furthermore, to avoid the creation of spurious 
discontinuities, we constrain rd and re to be continuous by 
requiring that rd( g ± s) = re( g ± s).

The function rd modifies the fine-scale details by altering the 
oscillations around the value g. In our applications we process 
positive and negative details symmetrically, letting us write:

	 rd(i, g, s) = g + sign (i – g)s fd(|i − g|/s)� (1)

where fd is a smooth function mapping from [0, 1] to [0, 1] 
that controls how details are modified. The advantage of this 
formulation is that it depends only on the amplitude of the 
detail |i − g| relative to the parameter s, that is, |i − g|/s = 1 
corresponds to a detail of maximum amplitude according 
to the user-defined parameter. Analogously, re is a function 
that modifies the amplitude of edges that we again formu-
late in a symmetric way:

	 re(i, g, s) = g + sign (i – g)( fe(|i − g|−s) + s)� (2)

where fe is a smooth nonnegative function defined over [0, ¥). 
In this formulation, re depends only on the amplitude above 
the user threshold s, that is, |i − g| − s. The function fe con-
trols how the edge amplitude is modified since an edge of 
amplitude s + fe(a) becomes an edge with amplitude s + fe(a). 
For our previous 1D range compression example, clipping 
edges corresponds to fe = 0, which limits the amplitude of all 
edges to s. Useful specific choices for rd and re are described 
in the next section and are illustrated in Figure 5.

The advantage of the functional forms defined in 
Equations (1) and (2) is that they ensure that r is continuous 
and increasing, and the design of a specific filter boils down 
to defining the two point-wise functions fd and fe that each 

reduced in a straightforward way by processing only the sub-
pyramid needed to evaluate Ll[ ](x, y), illustrated in Figure 4. 
The base of this subpyramid lies within a K × K subregion 
R of the input image I, where K = O(2l); for Laplacian pyra-
mids built using a standard 5-tap interpolation filter, it can 
be shown that K = 3(2l+2 − 1). Put together with the fact that 
level l contains O(N/2l) coefficients, each level requires the 
manipulation of O(N) coefficients in total. Since there are 
O(log N) levels in the pyramid, the overall complexity of our 
algorithm is O(N log N). Later we will see that some applica-
tions only require a fixed number of levels to be processed or 
limit the depth of the subpyramids to a fixed value, reducing 
the complexity of our algorithm further.

Remapping function for gray-scale images. We assume 
the user has provided a parameter s such that intensity 

Figure 5. Family of point-wise functions for edge-aware manipulation described in Sections 5.2 and 5.3. The parameters a and b let us control 
how detail and tone are processed respectively. To compute a given Laplacian coefficient in the output, we filter the original image point-wise 
using a nonlinear function r(i) of the form shown. This remapping function is parametrized by the Gaussian pyramid coefficient g, describing 
the local image content, and a threshold s used to distinguish fine details (red) from larger edges (blue).

r(i)

Detail smoothing

g g

Edge-aware detail manipulation
Detail enhancement Tone mapping Inverse tone mapping

Edge-aware tone manipulation

g i g ig i

sr sr sr sr sr sr

g i

r(i)

g g

Combined operator
Detail enhance + tone map

g i

r(i)

g

0 ≤ b < 1
0 < a < 1a > 1

b = 1
0 < a < 1
b = 1

a = 1
0 ≤ b < 1

a = 1
b > 1

Algorithm 1 O(N log N) Version of Local Laplacian Filtering

input: image I, parameter s, remapping function r
output: image I¢
	 1:  compute input Gaussian pyramid {G[I ]}
	 2:  for all coefficients at position (x, y) and level l do
	 3:  g ¬ Gl(x, y)
	 4:  determine subregion R of I needed to evaluate Ll(x, y)
	 5:  create temporary buffer  of the same size
	 6:  for all pixels (u, v) of R do
	 7:    apply remapping function: (u, v) ¬ r(R(u, v), g, s)
	 8:  end for
	 9:  compute subpyramid {L[ ]}
10:  update output pyramid: Ll[I¢](x, y) ¬ Ll[ ](x, y)
11:  end for
12:  collapse output pyramid: I¢ ¬ collapse({Ll[I¢]})

Our algorithm considers the pyramid coefficients one by one 
(Step 2). Each of them is computed using the pixels from the 
finest resolution (Step 4) by applying the remapping func-
tion to them (Step 7) and building a Laplacian pyramid of the 
remapped data (Step 9). We copy the relevant coefficient into 
the output pyramid (Step 10) and once all the coefficients have 
been computed, we collapse pyramid the get the final result 
(Step 12).
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are visually indistinguishable from the full-pyramid pro-
cess with a PSNR on the order of 30 to 40 dB. While this 
performance is slower than previous work, our algorithm 
is highly data parallel and can easily exploit a multicore 
architecture. Using OpenMP, we obtain an 8× speed-up 
on an 8-core machine, bringing the running time down to 
4 seconds.

5.2. Detail manipulation
To modify the details of an image, we define an S-shaped 
point-wise function as is classically used for the local manip-
ulation of contrast. For this purpose, we use a power curve 
fd(D) = Da, where a > 0 is a user-defined parameter. Values 
larger than 1 smooth the details out, while values smaller 
than 1 increase their contrast (Figures 5 and 6). To restrict 
our attention to the details of an image, we set the edge-
modifying function to the identity fe(a) = a.

In the context of detail manipulation, the parameter s 
controls how at what magnitude signal variations should 
be considered edges and therefore be preserved. Large 
values allow the filter to alter larger portions of the sig-
nal and yield larger visual changes (Figure 7). In its basic 
form, detail manipulation is applied at all scales, but one 
can also control which scales are affected by limiting pro-
cessing to a subset of the pyramid levels (Figure 6c, d, e). 
While this control is discrete, the changes are gradual, 
and one can interpolate between the results from two 
subsets of levels if continuous control is desired. Our 
results from Figures 6 and 7 are comparable to results of 
Farbman et al.11; however, we do not require the complex 
machinery of a multiresolution preconditioned conju-
gate gradient solver. Note that our particular extension to 
color images allows us to boost the color contrast as well 
(Figures 6, 7, and 8).

Reducing noise amplification. As in other techniques for 
texture enhancement, increasing the contrast of the details 
may make noise and artifacts from lossy image compression 
more visible. We mitigate this issue by limiting the smallest 
D amplified. In our implementation, when a < 1, we com-
pute fd(D) = tDa + (1 − t)D, where t is a smooth step function 
equal to 0 if D is less than 1% of the maximum intensity, 1 if 
it is more than 2%, with a smooth transition in between. 
All the results in this paper and supplemental material are 
computed with this function.

have clear roles: fd controls the amplification or attenuation 
of details while fe controls the amplification or attenuation 
of edges.

Extension to color images. To handle color, it is possible 
to treat only the luminance channel and reintroduce chro-
minance after image processing (Section 5.3). However, our 
approach extends naturally to color images as well, letting 
us deal directly with 3D vectors representing, for example, 
the RGB or CIE-Lab channels. Algorithm 1 still applies, and 
we need only to update rd and re, using bold typeface to indi-
cate vectors:

	 rd(i, g, s) = g + unit (i – g)s fd(i − g/s)� (3a)

	 re(i, g, s) = g + unit (i – g)[ fe(i − g−s) + s]� (3b)

with unit(v) = v/v if v ¹ 0 and 0 otherwise. These equations 
define details as colors within a ball of radius s centered at 
g and edges as the colors outside it. They also do not change 
the roles of fd and fe, letting the same 1D functions that 
modify detail and edges in the gray-scale case be applied 
to generate similar effects in color. For images whose color 
channels are all equal, these formulas reduce to the gray-
scale formulas of Equations (1) and (2).

5. APPLICATIONS AND RESULTS
We now demonstrate how to realize practical image process-
ing applications using our approach and discuss implemen-
tation details. First we address edge-preserving smoothing 
and detail enhancement, followed by tone mapping and 
related tools. We validate our method with images used 
previously in the literature10–13, 27 and demonstrate that our 
method produces artifact-free results.

5.1. Implementation
We use the pyramids defined by Burt and Adelson,6 based 
on 5 × 5 kernels. On a 2.26 GHz Intel Xeon CPU, we process 
a one-megapixel image in about a minute using a single 
thread. This can be halved by limiting the depth of the 
intermediate pyramid to at most five levels, by applying the 
remapping to level max(0, l − 3) rather than always starting 
at the full-resolution image. This amounts to applying the 
remapping to a downsampled version of the image when 
processing coarse pyramid levels. The resulting images 

(a) Input (b) Reduced details (a = 4) (c) Increased details (all
 levels, a = 0.25)

(d) Increased details (lowest
 two levels, a = 0.25)

(e) Increased details (level 3
 and higher, a = 0.25)

Figure 6. Smoothing and enhancement of detail, while preserving edges (s = 0.3). Processing only a subset of the levels controls the 
frequency of the details that are manipulated (c, d, e). The images have been cropped to make the flower bigger and its details more visible.
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factor so that the output dynamic range is 100:1 for the 
linear intensities. Finally, we multiply the intensity by 
the color ratios (rr, rg, rb) to obtain the output RGB chan-
nels, then gamma correct with an exponent of 1/2.2 for 
display. We found that fixing the output dynamic range 
not only makes it easy to achieve a consistent look but 
also constrains the system. As a result, the s and b param-
eters have similar effects, both controlling the balance 
between local and global contrast in the rendered image 
(Figure 9). From a practical standpoint, we advise keeping 
s fixed and varying the slope b between 0, where the local 
contrast is responsible for most of the dynamic range, 
and 1, where the global contrast dominates. Unless oth-
erwise specified, we use s = log(2.5), which gave consis-
tently good results in our experiments. Since we work in 
the log domain, this value corresponds to a ratio between 
pixel intensities. It does not depend on the dynamic range 
of the scene, and assumes only that the input HDR image 
measures radiance up to scale.

Our tone mapping operator builds upon standard ele-
ments from previous work that could be substituted for oth-
ers. For instance, one could instead use a sigmoid to remap 
the intensities to the display range30 or use a different color 
management method (e.g., Mantiuk et al.24). Also, we did not 
apply any additional “beautifying curve” or increased satu-
ration as is commonly done in photo editing software. Our 
approach produces a clean output image that can be post-
processed in this way if desired.

Range compression is a good test case to demon-
strate the abilities of our pyramid-based filters because 
of the large modification involved. For high compres-
sion, even subtle inaccuracies can become visible, espe-
cially at high-contrast edges. In our experiments, we did 
not observe aliasing or oversharpening artifacts even on 
cases where other methods suffer from them (Figures 10 
and 11). We also stress-tested our operator by producing 

(a) s = 0.2 (b) s = 0.5

Figure 7. Effect of the s parameter for detail enhancement (a = 0.25). 
Same input as Figure 6.

(a) Input (b) Luminance only (c) RGB channels

(d) Close-up (e) Close-up (f) Close-up

Figure 8. Filtering only the luminance (b) preserves the original 
colors in (a), while filtering the RGB channels (c) also modifies the 
color contrast (a = 0.25, b = 1, s = 0.4).

(a) b = 0
s = log(2.5)

(b) b = 0
s = log(3.0)

(c) b = 0.75
s = log(2.5)

Figure 9. b and s have similar effects on tone mapping results, they 
control the balance between global and local contrast. a is set to 1 in 
all three images.

5.3. Tone manipulation
Our approach can also be used for reducing the intensity 
range of a high-dynamic-range (HDR) image, according 
to the standard tone mapping strategy of compressing the 
large-scale variations while preserving (or enhancing) the 
details.35 In our framework, we manipulate large-scale varia-
tions by defining a point-wise function modifying the edge 
amplitude,  fe(a) = ba, where b ³ 0 is a user-defined parameter 
(Figure 5).

In our implementation of tone manipulation, we pro-
cess the image intensity channel only and keep the 
color unchanged.10 We compute an intensity image 

 and color ratios ,  
where Ir, Ig, and Ib are the RGB channels. We apply our fil-
ter on the log intensities log(Ii),35 using the natural loga-
rithm. For tone mapping, we set our filter with a £ 1 so 
that details are preserved or enhanced, and b < 1 so that 
edges are compressed. This produces new values 
, which we must then map to the displayable range of 
[0,  1]. We remap the result  by first offsetting its 
values to make its maximum 0, then scaling them so that 
they cover a user-defined range.10, 21 In our implementa-
tion, we estimate a robust maximum and minimum with 
the 99.5th and 0.5th percentiles, and we set the scale 
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5.4. Discussion
While our method can fail in the presence of excessive 
noise or when extreme parameter settings are used (e.g., 
the lenna picture in supplemental material has a high 
level of noise), we found that our filters are very robust and 
behave well over a broad range of settings. Figure 15 shows 
a variety of parameters values applied to the same image 
and the results are consistently satisfying, high-quality, and 
halo-free; many more such examples are provided in sup-
plemental material. While the goal of edge-aware process-
ing can be ill-defined, the results that we obtain show that 
our approach allows us to realize many edge-aware effects 
with intuitive parameters and a simple implementation. 
The current shortcoming of our approach is its running 
time. We can mitigate this issue, thanks to the multiscale 
nature of our algorithm, allowing us to generate quick pre-
views that are faithful to the full-resolution results (Figure 
16). Furthermore, the algorithm is highly parallelizable and 
should lend itself to a fast GPU implementation. Beyond 
these practical aspects, our main contribution is a better 
characterization of the multiscale properties of images. 

(a) Edge-aware wavelets (b) Close-up

(c) Our result (d) Close-up

Figure 10. The extreme contrast near the light bulb is particularly 
challenging. Images (a) and (b) are reproduced from Fattal.12 The 
edge-aware wavelets suffer from aliasing and generate an irregular 
edge (b). In comparison, our approach (d) produces a clean edge. We 
set our method to approximately achieve the same level of details 
(s = log(3.5), a = 0.5, b = 0).

results with a low global contrast (b = 0) and high local 
details (a = 0.25). In general, the results produced by our 
method did not exhibit any particular problems (Figure 
12). We compare exaggerated renditions of our method 
with Farbman et al.11 and Li et al.21 Our method produces 
consistent results without halos, whereas the other 
methods either create halos or fail to exaggerate detail 
(Figure 13).

One typical difficulty we encountered is that some-
times the sky interacts with other elements to form high-
frequency textures that undesirably get amplified by our 
detail-enhancing filter (Figures 8b and 14). Such “mis-
interpretation” is common to all low-level filters with-
out semantic understanding of the scene, and typically 
requires user feedback to correct.22

We also experimented with inverse tone mapping, 
using slope values b larger than 1 to increase the dynamic 
range of a normal image. Since we operate on log inten-
sities, roughly speaking, the linear dynamic range gets 
exponentiated by b. Applying our tone-mapping opera-
tor on these range-expanded results gives images close to 
the originals, typically with a PSNR between 25 and 30 dB 
for b = 2.5. This shows that our inverse tone mapping pre-
serves the image content well. While a full-scale study on 
an HDR monitor is beyond the scope of this paper, we 
believe that our simple approach can complement other 
relevant techniques (e.g., Masia et  al.25). Sample HDR 
results are provided in supplemental material.

(a) Uncorrected bilat. filter (b) Close-up

(c) Our result (d) Close-up

Figure 11. The bilateral filter sometimes oversharpens edges, 
which can leads to artifacts (b). We used code provided by Paris and 
Durand26 and multiplied the detail layer by 2.5 to generate these 
results. Although such artifacts can be fixed in postprocessing, 
this introduces more complexity to the system and requires new 
parameters. Our approach produces clean edges directly (d). We 
set our method to achieve approximately the same visual result 
(s = log(2.5), a = 0.5, b = 0).
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Figure 12. We stressed our approach by applying a strong range compression coupled with a large detail increase (a = 0.25, b = 0, s = log(2.5)). 
The results are dominated by local contrast and are reminiscent of the popular, exaggerated “HDR look” but without the unsightly halos 
associated with it. In terms of image quality, our results remain artifact-free in most cases. We explore further parameter variations in the 
supplemental material.

Figure 13. We compare exaggerated, tone-mapped renditions of an HDR image. The wavelet-based method by Li et al.21 is best suited for 
neutral renditions and generates halos when one increases the level of detail (a). The multiscale method by Farbman et al.11 performs better 
and produces satisfying results for intermediate levels of detail (b), but halos and edge artifacts sometimes appear for a larger increase, as in 
this image for instance; see the edge of the white square on the blue book cover and the edge of the open book (c). In comparison, our approach 
achieves highly detailed renditions without artifacts (d). These results as well as many others may be better seen in the supplemental material.

(a) Li et al.21 (detailed rendition 
       using parameters suggested
      by the authors)

(b) Farbman et al.11 (detailed
      rendition using parameters 
      suggested by the authors)

(d) Our result with exaggerated
  details (a = 0.25, b = 0)
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(c) Farbman et al.11 (exaggerated 
rendition using parameters
suggested by the authors)
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(a) No detail increase (a = 1) (b) Detail increased (a = 0.25)

Figure 14. Our approach is purely signal-based and its ignorance 
of scene semantics can lead to artifacts. For a large increase in 
local contrast (b), at a level similar to Figure 12, the sky gets locally 
darker behind clouds, because it forms a blue-0white texture 
amplified by our filter. Our result for this example is good elsewhere, 
and this issue does not appear with a more classical rendition (a).

Less detailsMore details
a = 0.25 a = 0.5 a = 2 a = 4

s 
= 

0
.1

s 
= 

0
.2

s 
= 

0
.4

Figure 15. Our filter to enhance and reduce details covers a large space of possible outputs without creating halos.

Many problems related to photo editing are grounded 
in these properties of images and we believe that a better 
understanding can have benefits beyond the applications 
demonstrated in this paper.

6. CONCLUSION
Link to recent work. We first presented this work at the 
ACM SIGGRAPH conference in 2011. The main difference 

with our original article is Section 3 that now focuses on 
qualitative properties of edges. A formal discussion of these 
properties can be found in Paris et al.28 Since then, we also 
extended this work with a fast algorithm that makes Local 
Laplacian Filters practical, an analysis that shows their rela-
tionship to the Bilateral Filter, an application to the transfer 
of gradient histograms applied to photographic style trans-
fer, and additional comparisons with existing techniques 
such as the Guided Filter.17 These results are described in 
Aubry et al.2

Although Local Laplacian Filters can reduce image 
details, Xu et  al.39, 40 have shown that they do not fully 
remove them and have proposed filters that completely 
suppress details for applications such as cartoon ren-
dering and mosaic texture removal. By addressing the 
extreme detail removal problem, this work is comple-
mentary to Local Laplacian Filters that perform well at 
extreme detail increase. Hadwiger et al.16 have introduced 
a dedicated data structure to process very large images 
efficiently and have demonstrated its application to Local 
Laplacian Filtering.

Closing note. We have presented a new technique for 
edge-aware image processing based solely on the Laplacian 
pyramid. It is conceptually simple, allows for a wide range 
of edge-aware filters, and consistently produces artifact-free 
images. We demonstrate high-quality results over a large 
variety of images and parameter settings, confirming the 
method’s robustness. Our results open new perspectives on 
multiscale image analysis and editing since Laplacian pyra-
mids were previously considered as ill-suited for manipu-
lating edges. Given the wide use of pyramids and the need 
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for edge-aware processing, we believe our new insights can 
have a broad impact in the domain of image editing and its 
related applications.
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